DreamBoothFineTune


NameDreamBoothFineTune JSON
Version 0.2.2 PyPI version JSON
download
home_pagehttps://github.com/skillfi/fine-tuning
SummaryNone
upload_time2024-08-10 17:41:29
maintainerNone
docs_urlNone
authorAlex
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements setuptools pillow datasets torchvision numpy accelerate diffusers transformers tqdm bitsandbytes
Travis-CI No Travis.
coveralls test coverage No coveralls.
            StableDiffusionInpaintingFineTune
=================================

This project provides a toolkit for fine-tuning the Stable Diffusion model for inpainting tasks (image restoration based on a mask) using PyTorch and Hugging Face Diffusers libraries.

Requirements
------------

Before starting, you need to install the following libraries:

- ``torch``
- ``diffusers``
- ``transformers``
- ``accelerate``
- ``huggingface_hub``
- ``PIL``
- ``numpy``
- ``tqdm``

Description
-----------

StableDiffusionInpaintingFineTune
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This class is responsible for fine-tuning the Stable Diffusion model for the inpainting task. It supports training both the text encoder and the UNet model and uses various settings to control the training process.

Constructor
^^^^^^^^^^^

.. code-block:: python

   __init__(self, pretrained_model_name_or_path, resolution, center_crop, ...)

- **pretrained_model_name_or_path**: The path or name of the pre-trained model.
- **resolution**: The resolution of the images.
- **center_crop**: Whether to apply center cropping during data preparation.
- **train_text_encoder**: Whether to train the text encoder.
- **dataset**: The dataset object.
- **learning_rate**: The initial learning rate.
- **max_training_steps**: The maximum number of training steps.
- **save_steps**: The number of steps between saving checkpoints.
- **train_batch_size**: The batch size.
- **gradient_accumulation_steps**: The number of steps to accumulate gradients.
- **mixed_precision**: Use of mixed precision ("fp16", "bf16", or None).
- **gradient_checkpointing**: Use of gradient checkpointing.
- **use_8bit_adam**: Use of the 8-bit Adam optimizer.
- **seed**: The random seed for reproducibility.
- **output_dir**: The directory for saving results.
- **push_to_hub**: Whether to upload the results to the Hugging Face Hub.
- **repo_id**: The repository ID on Hugging Face Hub.

Methods
^^^^^^^

- **prepare_mask_and_masked_image(image, mask)**: Prepares the mask and masked image.
- **random_mask(im_shape, ratio=1, mask_full_image=False)**: Generates a random mask.
- **load_args_for_training()**: Loads the necessary components of the model for training.
- **collate_fn(examples)**: Forms a batch of data for the model.
- **__call__(self, *args, **kwargs)**: The main method for running the training process.

Usage
-----

To start training, you should create an instance of the ``StableDiffusionInpaintingFineTune`` class and call its ``__call__`` method, passing the necessary arguments.

.. code-block:: python

   model = StableDiffusionInpaintingFineTune(
       pretrained_model_name_or_path="path_to_model",
       resolution=512,
       center_crop=True,
       ...
   )

   model()

License
-------

The project is distributed under the MIT License.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/skillfi/fine-tuning",
    "name": "DreamBoothFineTune",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Alex",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/6f/81/b51f4adc2d9bcc961e0e0c66ea124970de88bdc9005571e44f1a7b315cf8/dreamboothfinetune-0.2.2.tar.gz",
    "platform": null,
    "description": "StableDiffusionInpaintingFineTune\r\n=================================\r\n\r\nThis project provides a toolkit for fine-tuning the Stable Diffusion model for inpainting tasks (image restoration based on a mask) using PyTorch and Hugging Face Diffusers libraries.\r\n\r\nRequirements\r\n------------\r\n\r\nBefore starting, you need to install the following libraries:\r\n\r\n- ``torch``\r\n- ``diffusers``\r\n- ``transformers``\r\n- ``accelerate``\r\n- ``huggingface_hub``\r\n- ``PIL``\r\n- ``numpy``\r\n- ``tqdm``\r\n\r\nDescription\r\n-----------\r\n\r\nStableDiffusionInpaintingFineTune\r\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\nThis class is responsible for fine-tuning the Stable Diffusion model for the inpainting task. It supports training both the text encoder and the UNet model and uses various settings to control the training process.\r\n\r\nConstructor\r\n^^^^^^^^^^^\r\n\r\n.. code-block:: python\r\n\r\n   __init__(self, pretrained_model_name_or_path, resolution, center_crop, ...)\r\n\r\n- **pretrained_model_name_or_path**: The path or name of the pre-trained model.\r\n- **resolution**: The resolution of the images.\r\n- **center_crop**: Whether to apply center cropping during data preparation.\r\n- **train_text_encoder**: Whether to train the text encoder.\r\n- **dataset**: The dataset object.\r\n- **learning_rate**: The initial learning rate.\r\n- **max_training_steps**: The maximum number of training steps.\r\n- **save_steps**: The number of steps between saving checkpoints.\r\n- **train_batch_size**: The batch size.\r\n- **gradient_accumulation_steps**: The number of steps to accumulate gradients.\r\n- **mixed_precision**: Use of mixed precision (\"fp16\", \"bf16\", or None).\r\n- **gradient_checkpointing**: Use of gradient checkpointing.\r\n- **use_8bit_adam**: Use of the 8-bit Adam optimizer.\r\n- **seed**: The random seed for reproducibility.\r\n- **output_dir**: The directory for saving results.\r\n- **push_to_hub**: Whether to upload the results to the Hugging Face Hub.\r\n- **repo_id**: The repository ID on Hugging Face Hub.\r\n\r\nMethods\r\n^^^^^^^\r\n\r\n- **prepare_mask_and_masked_image(image, mask)**: Prepares the mask and masked image.\r\n- **random_mask(im_shape, ratio=1, mask_full_image=False)**: Generates a random mask.\r\n- **load_args_for_training()**: Loads the necessary components of the model for training.\r\n- **collate_fn(examples)**: Forms a batch of data for the model.\r\n- **__call__(self, *args, **kwargs)**: The main method for running the training process.\r\n\r\nUsage\r\n-----\r\n\r\nTo start training, you should create an instance of the ``StableDiffusionInpaintingFineTune`` class and call its ``__call__`` method, passing the necessary arguments.\r\n\r\n.. code-block:: python\r\n\r\n   model = StableDiffusionInpaintingFineTune(\r\n       pretrained_model_name_or_path=\"path_to_model\",\r\n       resolution=512,\r\n       center_crop=True,\r\n       ...\r\n   )\r\n\r\n   model()\r\n\r\nLicense\r\n-------\r\n\r\nThe project is distributed under the MIT License.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "0.2.2",
    "project_urls": {
        "Homepage": "https://github.com/skillfi/fine-tuning"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6f81b51f4adc2d9bcc961e0e0c66ea124970de88bdc9005571e44f1a7b315cf8",
                "md5": "bc921712dca4685ed1f821d0962cb267",
                "sha256": "427039c67eae3185e278e4a577c5a0c89d82ea6be0f9478d8085548ba21c23b2"
            },
            "downloads": -1,
            "filename": "dreamboothfinetune-0.2.2.tar.gz",
            "has_sig": false,
            "md5_digest": "bc921712dca4685ed1f821d0962cb267",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 12939,
            "upload_time": "2024-08-10T17:41:29",
            "upload_time_iso_8601": "2024-08-10T17:41:29.768258Z",
            "url": "https://files.pythonhosted.org/packages/6f/81/b51f4adc2d9bcc961e0e0c66ea124970de88bdc9005571e44f1a7b315cf8/dreamboothfinetune-0.2.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-10 17:41:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "skillfi",
    "github_project": "fine-tuning",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "setuptools",
            "specs": [
                [
                    "~=",
                    "72.1.0"
                ]
            ]
        },
        {
            "name": "pillow",
            "specs": [
                [
                    "~=",
                    "10.4.0"
                ]
            ]
        },
        {
            "name": "datasets",
            "specs": [
                [
                    "~=",
                    "2.20.0"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    "~=",
                    "0.19.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "~=",
                    "1.26.4"
                ]
            ]
        },
        {
            "name": "accelerate",
            "specs": [
                [
                    "~=",
                    "0.33.0"
                ]
            ]
        },
        {
            "name": "diffusers",
            "specs": [
                [
                    "~=",
                    "0.30.0"
                ]
            ]
        },
        {
            "name": "transformers",
            "specs": [
                [
                    "~=",
                    "4.44.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "~=",
                    "4.66.4"
                ]
            ]
        },
        {
            "name": "bitsandbytes",
            "specs": []
        }
    ],
    "lcname": "dreamboothfinetune"
}
        
Elapsed time: 0.62019s