FDL-pytorch


NameFDL-pytorch JSON
Version 1.0 PyPI version JSON
download
home_pagehttps://github.com/eezkni/FDL
SummaryFrequency Distribution Loss (FDL) for misalignment data
upload_time2024-03-09 13:45:00
maintainer
docs_urlNone
authorZhangkai Ni, Juncheng Wu, Zian Wang
requires_python
licenseMIT
keywords pytorch loss image transformation misalignment
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Frequency Distribution Loss (FDL) for misaligned data

**The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024**

[Zhangkai Ni](https://eezkni.github.io/), [Juncheng Wu](https://scholar.google.com/citations?user=RSn2gykAAAAJ&hl=en&oi=sra), [Zian Wang](https://scholar.google.com/citations?user=Mi6YUBoAAAAJ&hl=en&oi=sra), [Wenhan Yang](https://flyywh.github.io/), [Hanli Wang](https://mic.tongji.edu.cn/51/91/c9778a86417/page.htm), [Lin Ma](https://forestlinma.com/)

This repository provides the official PyTorch implementation for the paper “Misalignment-Robust Frequency Distribution Loss for Image Transformation”, CVPR-2024. [Paper](https://arxiv.org/abs/2402.18192)

## About FDL

A novel Frequency Distribution Loss (FDL) for image transformation models trained with misaligned data, opening up new avenues for addressing the broad issue of misalignment in image transformation tasks.

## Quick Start

### Installation:

`pip install fdl-pytorch`

### Requirements:

- Python>=3.6
- Pytorch>=1.0

### Usage:

```python
from FDL_pytorch import FDL_loss
fdl_loss = FDL_loss()
# X: (N,C,H,W) 
# Y: (N,C,H,W) 
loss_value = fdl_loss(X, Y)
loss_value.backward()
```

## Citation

If you find our work useful, please cite it as

```
@article{ni2024misalignment,
  title={Misalignment-Robust Frequency Distribution Loss for Image Transformation},
  author={Ni, Zhangkai and Wu, Juncheng and Wang, Zian and Yang, Wenhan and Wang, Hanli and Ma, Lin},
  journal={arXiv preprint arXiv:2402.18192},
  year={2024}
}
```

## Contact

Thanks for your attention! If you have any suggestion or question, feel free to leave a message here or contact Dr. Zhangkai Ni (eezkni@gmail.com).


## License

[MIT License](https://opensource.org/licenses/MIT)




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/eezkni/FDL",
    "name": "FDL-pytorch",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "pytorch,loss,image transformation,misalignment",
    "author": "Zhangkai Ni, Juncheng Wu, Zian Wang",
    "author_email": "zkni@tongji.edu.cn",
    "download_url": "https://files.pythonhosted.org/packages/56/7f/800b3693e970adf456e35f832c4518aa8b6cf6a90da6fcab6b57a6ed8535/FDL_pytorch-1.0.tar.gz",
    "platform": "python",
    "description": "# Frequency Distribution Loss (FDL) for misaligned data\n\n**The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024**\n\n[Zhangkai Ni](https://eezkni.github.io/), [Juncheng Wu](https://scholar.google.com/citations?user=RSn2gykAAAAJ&hl=en&oi=sra), [Zian Wang](https://scholar.google.com/citations?user=Mi6YUBoAAAAJ&hl=en&oi=sra), [Wenhan Yang](https://flyywh.github.io/), [Hanli Wang](https://mic.tongji.edu.cn/51/91/c9778a86417/page.htm), [Lin Ma](https://forestlinma.com/)\n\nThis repository provides the official PyTorch implementation for the paper \u201cMisalignment-Robust Frequency Distribution Loss for Image Transformation\u201d, CVPR-2024. [Paper](https://arxiv.org/abs/2402.18192)\n\n## About FDL\n\nA novel Frequency Distribution Loss (FDL) for image transformation models trained with misaligned data, opening up new avenues for addressing the broad issue of misalignment in image transformation tasks.\n\n## Quick Start\n\n### Installation:\n\n`pip install fdl-pytorch`\n\n### Requirements:\n\n- Python>=3.6\n- Pytorch>=1.0\n\n### Usage:\n\n```python\nfrom FDL_pytorch import FDL_loss\nfdl_loss = FDL_loss()\n# X: (N,C,H,W) \n# Y: (N,C,H,W) \nloss_value = fdl_loss(X, Y)\nloss_value.backward()\n```\n\n## Citation\n\nIf you find our work useful, please cite it as\n\n```\n@article{ni2024misalignment,\n  title={Misalignment-Robust Frequency Distribution Loss for Image Transformation},\n  author={Ni, Zhangkai and Wu, Juncheng and Wang, Zian and Yang, Wenhan and Wang, Hanli and Ma, Lin},\n  journal={arXiv preprint arXiv:2402.18192},\n  year={2024}\n}\n```\n\n## Contact\n\nThanks for your attention! If you have any suggestion or question, feel free to leave a message here or contact Dr. Zhangkai Ni (eezkni@gmail.com).\n\n\n## License\n\n[MIT License](https://opensource.org/licenses/MIT)\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Frequency Distribution Loss (FDL) for misalignment data",
    "version": "1.0",
    "project_urls": {
        "Homepage": "https://github.com/eezkni/FDL"
    },
    "split_keywords": [
        "pytorch",
        "loss",
        "image transformation",
        "misalignment"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bd8c74e0d0937434f9229105ac7032d1b54422db701ea69ac223090d42a10aa4",
                "md5": "347885c221954e146824c820df264f2c",
                "sha256": "78621ebe88eafc98c5302bc9bc0a035359d3ca5e0c500b5440938c049911d1c3"
            },
            "downloads": -1,
            "filename": "FDL_pytorch-1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "347885c221954e146824c820df264f2c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4643,
            "upload_time": "2024-03-09T13:44:59",
            "upload_time_iso_8601": "2024-03-09T13:44:59.174987Z",
            "url": "https://files.pythonhosted.org/packages/bd/8c/74e0d0937434f9229105ac7032d1b54422db701ea69ac223090d42a10aa4/FDL_pytorch-1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "567f800b3693e970adf456e35f832c4518aa8b6cf6a90da6fcab6b57a6ed8535",
                "md5": "1bf5d3ca51e2a46621741238b384bb01",
                "sha256": "df7494c5b4f5cbeb68b8166f93fcb2b92a600703f4538445c9de58a47e9c5f69"
            },
            "downloads": -1,
            "filename": "FDL_pytorch-1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "1bf5d3ca51e2a46621741238b384bb01",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4595,
            "upload_time": "2024-03-09T13:45:00",
            "upload_time_iso_8601": "2024-03-09T13:45:00.343040Z",
            "url": "https://files.pythonhosted.org/packages/56/7f/800b3693e970adf456e35f832c4518aa8b6cf6a90da6fcab6b57a6ed8535/FDL_pytorch-1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-09 13:45:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "eezkni",
    "github_project": "FDL",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "fdl-pytorch"
}
        
Elapsed time: 0.23498s