Name | Version | Summary | date |
fakecbed |
0.2.1 |
A Python library for generating quickly images that imitate convergent beam electron diffraction patterns. |
2025-01-21 22:41:18 |
distoptica |
0.3.1 |
Python library for modelling optical distortions. |
2025-01-21 22:04:03 |
trainplotkit |
0.1.0 |
Create live subplots in your notebook that update while training a PyTorch model |
2025-01-21 22:00:08 |
nnm |
0.0.1 |
Neural Network Models |
2025-01-21 16:09:56 |
fbgemm-gpu-nightly |
2025.1.21 |
None |
2025-01-21 14:12:57 |
nbdev-pytorch |
0.0.1630 |
nbdev docs lookup for PyTorch |
2025-01-21 13:11:07 |
transformers |
4.48.1 |
State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow |
2025-01-20 16:36:07 |
timm |
1.0.14 |
PyTorch Image Models |
2025-01-19 23:08:58 |
torchx-nightly |
2025.1.19 |
TorchX SDK and Components |
2025-01-19 11:26:39 |
torchserve-nightly |
2025.1.19 |
TorchServe is a tool for serving neural net models for inference |
2025-01-19 11:25:46 |
pytorch_optimizer |
3.3.4 |
optimizer & lr scheduler & objective function collections in PyTorch |
2025-01-19 06:31:57 |
fbgemm-gpu-nightly-cpu |
2025.1.18 |
None |
2025-01-18 13:31:19 |
fbgemm-gpu-nightly-genai |
2025.1.18 |
None |
2025-01-18 13:20:57 |
pyfacer |
0.0.5 |
Face related toolkit |
2025-01-17 02:31:53 |
ellipse-rcnn |
0.2.0 |
An implementation of the Ellipse R-CNN object detection model in PyTorch, based on 'Ellipse R-CNN: Learning to Infer Elliptical Object from Clustering and Occlusion' by Dong et al. |
2025-01-16 09:44:57 |
unitorch |
0.0.0.24 |
unitorch provides efficient implementation of popular unified NLU / NLG / CV / CTR / MM / RL models with PyTorch. |
2025-01-15 07:13:00 |
impruver |
1.0.7 |
Transformer based LLM trainer |
2025-01-12 16:36:05 |
mlip-arena |
0.0.1a2 |
Fair and transparent benchmark of machine-learned interatomic potentials (MLIPs), beyond basic error metrics |
2025-01-11 18:10:02 |
model-wrapper |
0.4.0 |
Model wrapper for Pytorch, which can training, predict, evaluate, etc. |
2025-01-10 02:57:32 |
suave-ml |
0.1.2a1 |
A deep learning model (hybrid VAE) implementation for label information-guided dimensionality reduction and multi-task learning. |
2025-01-09 00:09:00 |