tensorboard-plugin-profile


Nametensorboard-plugin-profile JSON
Version 2.19.0 PyPI version JSON
download
home_pagehttps://github.com/tensorflow/profiler
SummaryProfile Tensorboard Plugin
upload_time2025-01-29 19:44:43
maintainerNone
docs_urlNone
authorGoogle Inc.
requires_python!=3.0.*,!=3.1.*,>=2.7
licenseApache 2.0
keywords jax pytorch xla tensorflow tensorboard xprof profile plugin
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Tensorboard Profiler Plugin
The profiler includes a suite of tools for [JAX](https://jax.readthedocs.io/), [TensorFlow](https://www.tensorflow.org/), and [PyTorch/XLA](https://github.com/pytorch/xla). These tools help you understand, debug and optimize programs to run on CPUs, GPUs and TPUs.

The profiler plugin offers a number of tools to analyse and visualize the
performance of your model across multiple devices. Some of the tools include:

*   **Overview**: A high-level overview of the performance of your model. This
    is an aggregated overview for your host and all devices. It includes:
    *   Performance summary and breakdown of step times.
    *   A graph of individual step times.
    *   A table of the top 10 most expensive operations.
*   **Trace Viewer**: Displays a timeline of the execution of your model that shows:
    *   The duration of each op.
    *   Which part of the system (host or device) executed an op.
    *   The communication between devices.
*   **Memory Profile Viewer**: Monitors the memory usage of your model.
*   **Graph Viewer**: A visualization of the graph structure of HLOs of your model.

## Demo
First time user? Come and check out this [Colab Demo](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras).

## Prerequisites
* TensorFlow >= 2.18.0
* TensorBoard >= 2.18.0
* tensorboard-plugin-profile >= 2.18.0

Note: The Tensorboard Profiler Plugin requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading).
Some charts and tables may be missing if you run TensorBoard entirely offline on
your local machine, behind a corporate firewall, or in a datacenter.

To profile on a **single GPU** system, the following NVIDIA software must be installed on your system:

1. NVIDIA GPU drivers and CUDA Toolkit:
    * CUDA 12.5 requires 525.60.13 and higher.
2. Ensure that CUPTI 10.1 exists on the path.

   ```shell
   $ /sbin/ldconfig -N -v $(sed 's/:/ /g' <<< $LD_LIBRARY_PATH) | grep libcupti
   ```

   If you don't see `libcupti.so.12.5` on the path, prepend its installation directory to the $LD_LIBRARY_PATH environmental variable:

   ```shell
   $ export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
   ```
   Run the ldconfig command above again to verify that the CUPTI 12.5 library is found.

   If this doesn't work, try:
   ```shell
   $ sudo apt-get install libcupti-dev
   ```

To profile a system with **multiple GPUs**, see this [guide](docs/profile_multi_gpu.md) for details.

To profile multi-worker GPU configurations, profile individual workers independently.

To profile cloud TPUs, you must have access to Google Cloud TPUs.

## Quick Start
The profiler plugin follows the TensorFlow versioning scheme. As a result, the
`tensorboard-plugin-profile` PyPI package can be behind the `tbp-nightly` PyPI
package. In order to get the latest version of the profiler plugin, you can
install the nightly package..

To install the nightly version of profiler:

```
$ pip uninstall tensorboard-plugin-profile
$ pip install tbp-nightly
```

Run TensorBoard:

```
$ tensorboard --logdir=profiler/demo
```
If you are behind a corporate firewall, you may need to include the `--bind_all`
tensorboard flag.

Go to `localhost:6006/#profile` of your browser, you should now see the demo overview page show up.
![Overview Page](docs/images/overview_page.png)
Congratulations! You're now ready to capture a profile.

## Next Steps
* JAX Profiling Guide: https://jax.readthedocs.io/en/latest/profiling.html
* TensorFlow Profiling Guide:  https://tensorflow.org/guide/profiler
* Cloud TPU Profiling Guide: https://cloud.google.com/tpu/docs/cloud-tpu-tools
* Colab Tutorial: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
* MiniGPT Example: https://docs.jaxstack.ai/en/latest/JAX_for_LLM_pretraining.html

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tensorflow/profiler",
    "name": "tensorboard-plugin-profile",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
    "maintainer_email": null,
    "keywords": "jax pytorch xla tensorflow tensorboard xprof profile plugin",
    "author": "Google Inc.",
    "author_email": "packages@tensorflow.org",
    "download_url": "https://files.pythonhosted.org/packages/e7/6d/5e2feccbb70ac077a3dacf0a24bcb95b07fc34c9308882095c4337c39058/tensorboard_plugin_profile-2.19.0.tar.gz",
    "platform": null,
    "description": "# Tensorboard Profiler Plugin\nThe profiler includes a suite of tools for [JAX](https://jax.readthedocs.io/), [TensorFlow](https://www.tensorflow.org/), and [PyTorch/XLA](https://github.com/pytorch/xla). These tools help you understand, debug and optimize programs to run on CPUs, GPUs and TPUs.\n\nThe profiler plugin offers a number of tools to analyse and visualize the\nperformance of your model across multiple devices. Some of the tools include:\n\n*   **Overview**: A high-level overview of the performance of your model. This\n    is an aggregated overview for your host and all devices. It includes:\n    *   Performance summary and breakdown of step times.\n    *   A graph of individual step times.\n    *   A table of the top 10 most expensive operations.\n*   **Trace Viewer**: Displays a timeline of the execution of your model that shows:\n    *   The duration of each op.\n    *   Which part of the system (host or device) executed an op.\n    *   The communication between devices.\n*   **Memory Profile Viewer**: Monitors the memory usage of your model.\n*   **Graph Viewer**: A visualization of the graph structure of HLOs of your model.\n\n## Demo\nFirst time user? Come and check out this [Colab Demo](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras).\n\n## Prerequisites\n* TensorFlow >= 2.18.0\n* TensorBoard >= 2.18.0\n* tensorboard-plugin-profile >= 2.18.0\n\nNote: The Tensorboard Profiler Plugin requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading).\nSome charts and tables may be missing if you run TensorBoard entirely offline on\nyour local machine, behind a corporate firewall, or in a datacenter.\n\nTo profile on a **single GPU** system, the following NVIDIA software must be installed on your system:\n\n1. NVIDIA GPU drivers and CUDA Toolkit:\n    * CUDA 12.5 requires 525.60.13 and higher.\n2. Ensure that CUPTI 10.1 exists on the path.\n\n   ```shell\n   $ /sbin/ldconfig -N -v $(sed 's/:/ /g' <<< $LD_LIBRARY_PATH) | grep libcupti\n   ```\n\n   If you don't see `libcupti.so.12.5` on the path, prepend its installation directory to the $LD_LIBRARY_PATH environmental variable:\n\n   ```shell\n   $ export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH\n   ```\n   Run the ldconfig command above again to verify that the CUPTI 12.5 library is found.\n\n   If this doesn't work, try:\n   ```shell\n   $ sudo apt-get install libcupti-dev\n   ```\n\nTo profile a system with **multiple GPUs**, see this [guide](docs/profile_multi_gpu.md) for details.\n\nTo profile multi-worker GPU configurations, profile individual workers independently.\n\nTo profile cloud TPUs, you must have access to Google Cloud TPUs.\n\n## Quick Start\nThe profiler plugin follows the TensorFlow versioning scheme. As a result, the\n`tensorboard-plugin-profile` PyPI package can be behind the `tbp-nightly` PyPI\npackage. In order to get the latest version of the profiler plugin, you can\ninstall the nightly package..\n\nTo install the nightly version of profiler:\n\n```\n$ pip uninstall tensorboard-plugin-profile\n$ pip install tbp-nightly\n```\n\nRun TensorBoard:\n\n```\n$ tensorboard --logdir=profiler/demo\n```\nIf you are behind a corporate firewall, you may need to include the `--bind_all`\ntensorboard flag.\n\nGo to `localhost:6006/#profile` of your browser, you should now see the demo overview page show up.\n![Overview Page](docs/images/overview_page.png)\nCongratulations! You're now ready to capture a profile.\n\n## Next Steps\n* JAX Profiling Guide: https://jax.readthedocs.io/en/latest/profiling.html\n* TensorFlow Profiling Guide:  https://tensorflow.org/guide/profiler\n* Cloud TPU Profiling Guide: https://cloud.google.com/tpu/docs/cloud-tpu-tools\n* Colab Tutorial: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras\n* MiniGPT Example: https://docs.jaxstack.ai/en/latest/JAX_for_LLM_pretraining.html\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Profile Tensorboard Plugin",
    "version": "2.19.0",
    "project_urls": {
        "Homepage": "https://github.com/tensorflow/profiler"
    },
    "split_keywords": [
        "jax",
        "pytorch",
        "xla",
        "tensorflow",
        "tensorboard",
        "xprof",
        "profile",
        "plugin"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "641ceb553690933f2142fc5ad4adc5a5d9594c2e69bd008ba80d2cc5f1a2c499",
                "md5": "54ad583bd0d726f37e930241d6fa291f",
                "sha256": "4c8ebd04be4963148e05411ac320988135e43625cffbae590b259ce96f79e9b0"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-cp310-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "54ad583bd0d726f37e930241d6fa291f",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 24504848,
            "upload_time": "2025-01-29T19:20:59",
            "upload_time_iso_8601": "2025-01-29T19:20:59.671415Z",
            "url": "https://files.pythonhosted.org/packages/64/1c/eb553690933f2142fc5ad4adc5a5d9594c2e69bd008ba80d2cc5f1a2c499/tensorboard_plugin_profile-2.19.0-cp310-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c2274c60a605529e82d5da8f7768a66665677da86540da807f16aa879f996c09",
                "md5": "ea740afb1c02901eaf190a6d69f76bf8",
                "sha256": "01f16b1c7189eded524231426fbc3eb866feed74af3fb24d589a8edf6040896a"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-cp310-none-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ea740afb1c02901eaf190a6d69f76bf8",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 25828136,
            "upload_time": "2025-01-29T19:43:28",
            "upload_time_iso_8601": "2025-01-29T19:43:28.436931Z",
            "url": "https://files.pythonhosted.org/packages/c2/27/4c60a605529e82d5da8f7768a66665677da86540da807f16aa879f996c09/tensorboard_plugin_profile-2.19.0-cp310-none-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7f8ebf4e2722aaa7e9d144cbf7578460472ee84e1260d20d113ddddbbecb2f0e",
                "md5": "4379d3bc3d6b0b111c2969e7c46d55aa",
                "sha256": "063ce1f21a1d4ec4b333640a4ee711ff912d2777731a1b13559f786ccf7e447f"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-cp310-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "4379d3bc3d6b0b111c2969e7c46d55aa",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 17779285,
            "upload_time": "2025-01-29T19:36:21",
            "upload_time_iso_8601": "2025-01-29T19:36:21.781586Z",
            "url": "https://files.pythonhosted.org/packages/7f/8e/bf4e2722aaa7e9d144cbf7578460472ee84e1260d20d113ddddbbecb2f0e/tensorboard_plugin_profile-2.19.0-cp310-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b88426c2cea17690ec85e5d6daca0886676a7e5143c7ff50f7b6837c837409d3",
                "md5": "3d57e33923c1f058a2eef9184b7772f8",
                "sha256": "0b2011074b636895cb5fd80a413e8a3e3f37b5f509d3bcd7247d9123c4f986ba"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-cp311-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "3d57e33923c1f058a2eef9184b7772f8",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 24506054,
            "upload_time": "2025-01-29T19:20:19",
            "upload_time_iso_8601": "2025-01-29T19:20:19.268156Z",
            "url": "https://files.pythonhosted.org/packages/b8/84/26c2cea17690ec85e5d6daca0886676a7e5143c7ff50f7b6837c837409d3/tensorboard_plugin_profile-2.19.0-cp311-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "50f7316f12c3e6f7f8fc58793d1178a7b502a904144d69279f83c910316453d6",
                "md5": "a71fefb263ef78585edfb091b98cc29b",
                "sha256": "1326d41697eef096533f350f446be9117bd8f5c121208545b6c2e6f93ee1fddc"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-cp311-none-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a71fefb263ef78585edfb091b98cc29b",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 25828910,
            "upload_time": "2025-01-29T19:45:54",
            "upload_time_iso_8601": "2025-01-29T19:45:54.529304Z",
            "url": "https://files.pythonhosted.org/packages/50/f7/316f12c3e6f7f8fc58793d1178a7b502a904144d69279f83c910316453d6/tensorboard_plugin_profile-2.19.0-cp311-none-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "214f6d26e31598fd2ffbc63b08485c9eaa7b72b56eaa5763d70a12c45d3da78a",
                "md5": "901bc244a5e9fa9ada295b32934d1460",
                "sha256": "75c070da51ac5e47695fcd9f61f57486310f32000479e4d1a99e30de11d950f2"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-cp311-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "901bc244a5e9fa9ada295b32934d1460",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 17781520,
            "upload_time": "2025-01-29T19:44:21",
            "upload_time_iso_8601": "2025-01-29T19:44:21.791631Z",
            "url": "https://files.pythonhosted.org/packages/21/4f/6d26e31598fd2ffbc63b08485c9eaa7b72b56eaa5763d70a12c45d3da78a/tensorboard_plugin_profile-2.19.0-cp311-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2891ddb04e9f44dc2699c8fea5debff619d9aa40dc64875686e646d1c7035e52",
                "md5": "deec1ddf1113323112b2cdd8a90b4040",
                "sha256": "317e7ccf7b8cface6345f495b615f81c0a6b765c1c27adaa35af48c3021972a9"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-cp39-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "deec1ddf1113323112b2cdd8a90b4040",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 24506141,
            "upload_time": "2025-01-29T19:22:17",
            "upload_time_iso_8601": "2025-01-29T19:22:17.761045Z",
            "url": "https://files.pythonhosted.org/packages/28/91/ddb04e9f44dc2699c8fea5debff619d9aa40dc64875686e646d1c7035e52/tensorboard_plugin_profile-2.19.0-cp39-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "18096ebd1da9f8f13c1d96eeeee39576f870fb503cd1709b50067422e9cecfb2",
                "md5": "eb205a899fdcd68c132b915cff99767b",
                "sha256": "46fb3060057251247122f11b41996aab34faece9e3992b6d60362cf3c5614d97"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-cp39-none-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "eb205a899fdcd68c132b915cff99767b",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 25828015,
            "upload_time": "2025-01-29T19:46:50",
            "upload_time_iso_8601": "2025-01-29T19:46:50.820447Z",
            "url": "https://files.pythonhosted.org/packages/18/09/6ebd1da9f8f13c1d96eeeee39576f870fb503cd1709b50067422e9cecfb2/tensorboard_plugin_profile-2.19.0-cp39-none-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3ddef26f154debe30d5e1cfe039774c5e3868316eed5ac2a92b78e10477ca2aa",
                "md5": "a79a1ce70e17b4545ceef8fa7324aaed",
                "sha256": "82e045a3b01f66fbdf774510a56e61dfe089cdbb4b6faefd2133c041f43c72e3"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-cp39-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "a79a1ce70e17b4545ceef8fa7324aaed",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 17779903,
            "upload_time": "2025-01-29T19:34:08",
            "upload_time_iso_8601": "2025-01-29T19:34:08.984410Z",
            "url": "https://files.pythonhosted.org/packages/3d/de/f26f154debe30d5e1cfe039774c5e3868316eed5ac2a92b78e10477ca2aa/tensorboard_plugin_profile-2.19.0-cp39-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "86c56def907dafeba3c5c77f9913b4bde2600a906345261d1a1e9859ad40287c",
                "md5": "dba3ad8b17497392dace7fd88773cc35",
                "sha256": "83262b7d339f35969e62755c80f1bed9525b8ea365c2b99fc9b95bc042b5ac89"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dba3ad8b17497392dace7fd88773cc35",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 5987076,
            "upload_time": "2025-01-29T19:44:40",
            "upload_time_iso_8601": "2025-01-29T19:44:40.579007Z",
            "url": "https://files.pythonhosted.org/packages/86/c5/6def907dafeba3c5c77f9913b4bde2600a906345261d1a1e9859ad40287c/tensorboard_plugin_profile-2.19.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e76d5e2feccbb70ac077a3dacf0a24bcb95b07fc34c9308882095c4337c39058",
                "md5": "30a3ef3b3e0474b2b9d53c1e76a2c848",
                "sha256": "e52328f321ff5207d53690abee68941a49d93b72a33f094b887e595b9b72906b"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.19.0.tar.gz",
            "has_sig": false,
            "md5_digest": "30a3ef3b3e0474b2b9d53c1e76a2c848",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 5902447,
            "upload_time": "2025-01-29T19:44:43",
            "upload_time_iso_8601": "2025-01-29T19:44:43.193005Z",
            "url": "https://files.pythonhosted.org/packages/e7/6d/5e2feccbb70ac077a3dacf0a24bcb95b07fc34c9308882095c4337c39058/tensorboard_plugin_profile-2.19.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-29 19:44:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tensorflow",
    "github_project": "profiler",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "tensorboard-plugin-profile"
}
        
Elapsed time: 0.44622s