tensorboard-plugin-profile


Nametensorboard-plugin-profile JSON
Version 2.20.6 PyPI version JSON
download
home_pagehttps://github.com/openxla/xprof
SummaryXProf Profiler Plugin
upload_time2025-08-20 02:34:50
maintainerNone
docs_urlNone
authorGoogle Inc.
requires_python!=3.0.*,!=3.1.*,>=2.7
licenseApache 2.0
keywords jax pytorch xla tensorflow tensorboard xprof profile plugin
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # XProf (+ Tensorboard Profiler Plugin)
XProf includes a suite of tools for [JAX](https://jax.readthedocs.io/), [TensorFlow](https://www.tensorflow.org/), and [PyTorch/XLA](https://github.com/pytorch/xla). These tools help you understand, debug and optimize programs to run on CPUs, GPUs and TPUs.

XProf offers a number of tools to analyse and visualize the
performance of your model across multiple devices. Some of the tools include:

*   **Overview**: A high-level overview of the performance of your model. This
    is an aggregated overview for your host and all devices. It includes:
    *   Performance summary and breakdown of step times.
    *   A graph of individual step times.
    *   A table of the top 10 most expensive operations.
*   **Trace Viewer**: Displays a timeline of the execution of your model that shows:
    *   The duration of each op.
    *   Which part of the system (host or device) executed an op.
    *   The communication between devices.
*   **Memory Profile Viewer**: Monitors the memory usage of your model.
*   **Graph Viewer**: A visualization of the graph structure of HLOs of your model.

## Demo
First time user? Come and check out this [Colab Demo](https://docs.jaxstack.ai/en/latest/JAX_for_LLM_pretraining.html).

## Prerequisites

* tensorboard-plugin-profile >= 2.19.0
* (optional) TensorBoard >= 2.19.0

Note: XProf requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading).
Some charts and tables may be missing if you run TensorBoard entirely offline on
your local machine, behind a corporate firewall, or in a datacenter.

To profile on a **single GPU** system, the following NVIDIA software must be
installed on your system:

1. NVIDIA GPU drivers and CUDA Toolkit:
    * CUDA 12.5 requires 525.60.13 and higher.
2. Ensure that CUPTI 10.1 exists on the path.

   ```shell
   $ /sbin/ldconfig -N -v $(sed 's/:/ /g' <<< $LD_LIBRARY_PATH) | grep libcupti
   ```

   If you don't see `libcupti.so.12.5` on the path, prepend its installation
   directory to the $LD_LIBRARY_PATH environmental variable:

   ```shell
   $ export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
   ```
   Run the ldconfig command above again to verify that the CUPTI 12.5 library is
   found.

   If this doesn't work, try:
   ```shell
   $ sudo apt-get install libcupti-dev
   ```

To profile a system with **multiple GPUs**, see this [guide](https://github.com/tensorflow/profiler/blob/master/docs/profile_multi_gpu.md) for details.

To profile multi-worker GPU configurations, profile individual workers
independently.

To profile cloud TPUs, you must have access to Google Cloud TPUs.

## Quick Start
In order to get the latest version of the profiler plugin, you can install the
nightly package.

To install the nightly version of profiler:

```
$ pip uninstall xprof
$ pip install xprof-nightly
```

Without TensorBoard:
```
$ xprof --logdir=profiler/demo --port=6006
```

With TensorBoard:

```
$ tensorboard --logdir=profiler/demo
```
If you are behind a corporate firewall, you may need to include the `--bind_all`
tensorboard flag.

Go to `localhost:6006/#profile` of your browser, you should now see the demo
overview page show up.
Congratulations! You're now ready to capture a profile.

## Next Steps

* JAX Profiling Guide: https://jax.readthedocs.io/en/latest/profiling.html
* TensorFlow Profiling Guide: https://tensorflow.org/guide/profiler
* Cloud TPU Profiling Guide: https://cloud.google.com/tpu/docs/cloud-tpu-tools
* Colab Tutorial: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
* Tensorflow Colab: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/openxla/xprof",
    "name": "tensorboard-plugin-profile",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
    "maintainer_email": null,
    "keywords": "jax pytorch xla tensorflow tensorboard xprof profile plugin",
    "author": "Google Inc.",
    "author_email": "packages@tensorflow.org",
    "download_url": null,
    "platform": null,
    "description": "# XProf (+ Tensorboard Profiler Plugin)\nXProf includes a suite of tools for [JAX](https://jax.readthedocs.io/), [TensorFlow](https://www.tensorflow.org/), and [PyTorch/XLA](https://github.com/pytorch/xla). These tools help you understand, debug and optimize programs to run on CPUs, GPUs and TPUs.\n\nXProf offers a number of tools to analyse and visualize the\nperformance of your model across multiple devices. Some of the tools include:\n\n*   **Overview**: A high-level overview of the performance of your model. This\n    is an aggregated overview for your host and all devices. It includes:\n    *   Performance summary and breakdown of step times.\n    *   A graph of individual step times.\n    *   A table of the top 10 most expensive operations.\n*   **Trace Viewer**: Displays a timeline of the execution of your model that shows:\n    *   The duration of each op.\n    *   Which part of the system (host or device) executed an op.\n    *   The communication between devices.\n*   **Memory Profile Viewer**: Monitors the memory usage of your model.\n*   **Graph Viewer**: A visualization of the graph structure of HLOs of your model.\n\n## Demo\nFirst time user? Come and check out this [Colab Demo](https://docs.jaxstack.ai/en/latest/JAX_for_LLM_pretraining.html).\n\n## Prerequisites\n\n* tensorboard-plugin-profile >= 2.19.0\n* (optional) TensorBoard >= 2.19.0\n\nNote: XProf requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading).\nSome charts and tables may be missing if you run TensorBoard entirely offline on\nyour local machine, behind a corporate firewall, or in a datacenter.\n\nTo profile on a **single GPU** system, the following NVIDIA software must be\ninstalled on your system:\n\n1. NVIDIA GPU drivers and CUDA Toolkit:\n    * CUDA 12.5 requires 525.60.13 and higher.\n2. Ensure that CUPTI 10.1 exists on the path.\n\n   ```shell\n   $ /sbin/ldconfig -N -v $(sed 's/:/ /g' <<< $LD_LIBRARY_PATH) | grep libcupti\n   ```\n\n   If you don't see `libcupti.so.12.5` on the path, prepend its installation\n   directory to the $LD_LIBRARY_PATH environmental variable:\n\n   ```shell\n   $ export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH\n   ```\n   Run the ldconfig command above again to verify that the CUPTI 12.5 library is\n   found.\n\n   If this doesn't work, try:\n   ```shell\n   $ sudo apt-get install libcupti-dev\n   ```\n\nTo profile a system with **multiple GPUs**, see this [guide](https://github.com/tensorflow/profiler/blob/master/docs/profile_multi_gpu.md) for details.\n\nTo profile multi-worker GPU configurations, profile individual workers\nindependently.\n\nTo profile cloud TPUs, you must have access to Google Cloud TPUs.\n\n## Quick Start\nIn order to get the latest version of the profiler plugin, you can install the\nnightly package.\n\nTo install the nightly version of profiler:\n\n```\n$ pip uninstall xprof\n$ pip install xprof-nightly\n```\n\nWithout TensorBoard:\n```\n$ xprof --logdir=profiler/demo --port=6006\n```\n\nWith TensorBoard:\n\n```\n$ tensorboard --logdir=profiler/demo\n```\nIf you are behind a corporate firewall, you may need to include the `--bind_all`\ntensorboard flag.\n\nGo to `localhost:6006/#profile` of your browser, you should now see the demo\noverview page show up.\nCongratulations! You're now ready to capture a profile.\n\n## Next Steps\n\n* JAX Profiling Guide: https://jax.readthedocs.io/en/latest/profiling.html\n* TensorFlow Profiling Guide: https://tensorflow.org/guide/profiler\n* Cloud TPU Profiling Guide: https://cloud.google.com/tpu/docs/cloud-tpu-tools\n* Colab Tutorial: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras\n* Tensorflow Colab: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "XProf Profiler Plugin",
    "version": "2.20.6",
    "project_urls": {
        "Homepage": "https://github.com/openxla/xprof"
    },
    "split_keywords": [
        "jax",
        "pytorch",
        "xla",
        "tensorflow",
        "tensorboard",
        "xprof",
        "profile",
        "plugin"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7f1c21ab41dbbad871ef72e96aa047b9d0a44b01fc071beb173599d3c04d5734",
                "md5": "16e92d288fcb4e7c88210d34cf96f71e",
                "sha256": "6e8d25eef34e31ab94c1dd406a279bf67334569d15325034c28d626d937b6f50"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.20.6-cp310-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "16e92d288fcb4e7c88210d34cf96f71e",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 3930,
            "upload_time": "2025-08-20T02:34:50",
            "upload_time_iso_8601": "2025-08-20T02:34:50.959035Z",
            "url": "https://files.pythonhosted.org/packages/7f/1c/21ab41dbbad871ef72e96aa047b9d0a44b01fc071beb173599d3c04d5734/tensorboard_plugin_profile-2.20.6-cp310-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "888e0bdd490b4996d0416556dfdd2edc418294af1e14797d75e6303c639750de",
                "md5": "6befdf7c012af897a939d585a8253b8e",
                "sha256": "1a9634430413389e1f6e7ffac28166c2421d3cc0177e476b2078716dc193d6fe"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.20.6-cp311-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "6befdf7c012af897a939d585a8253b8e",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 3931,
            "upload_time": "2025-08-20T02:35:58",
            "upload_time_iso_8601": "2025-08-20T02:35:58.886555Z",
            "url": "https://files.pythonhosted.org/packages/88/8e/0bdd490b4996d0416556dfdd2edc418294af1e14797d75e6303c639750de/tensorboard_plugin_profile-2.20.6-cp311-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b75d247bd38af897c278618f62c93dfe7372bce90faab6e0c19fc980ff8190dd",
                "md5": "8691fd644be66c6b1fd89339c72bbf39",
                "sha256": "41e3b17f3a2107dffa22cb0029da13915d8b5bfed8e74414f2c315fd27865358"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.20.6-cp312-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "8691fd644be66c6b1fd89339c72bbf39",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 3931,
            "upload_time": "2025-08-20T02:37:00",
            "upload_time_iso_8601": "2025-08-20T02:37:00.145794Z",
            "url": "https://files.pythonhosted.org/packages/b7/5d/247bd38af897c278618f62c93dfe7372bce90faab6e0c19fc980ff8190dd/tensorboard_plugin_profile-2.20.6-cp312-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d583308a06d4775db8294d6d61bff518a7671f6855bbabac8db3c1c185a97de0",
                "md5": "7d0a74d60f6839245010a2d54b39aa53",
                "sha256": "5cdce5f23bea61e28fc5f6f79b52c1d510ecfbbcf1fa667531982ddcbf178cd8"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.20.6-cp313-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "7d0a74d60f6839245010a2d54b39aa53",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 3931,
            "upload_time": "2025-08-20T02:39:06",
            "upload_time_iso_8601": "2025-08-20T02:39:06.366824Z",
            "url": "https://files.pythonhosted.org/packages/d5/83/308a06d4775db8294d6d61bff518a7671f6855bbabac8db3c1c185a97de0/tensorboard_plugin_profile-2.20.6-cp313-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "51d45dbfa33cbe8f83b7fe8ea1e14986f0b59ce1736645c2a5c0cc3ab6eb40ca",
                "md5": "2d561b580cc10e11074c15da870cac97",
                "sha256": "3c7e5efab57b555bb0477983ebb444c35a8b37a058a87ae94e7afea4a80e1abc"
            },
            "downloads": -1,
            "filename": "tensorboard_plugin_profile-2.20.6-cp39-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "2d561b580cc10e11074c15da870cac97",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 3931,
            "upload_time": "2025-08-20T02:34:54",
            "upload_time_iso_8601": "2025-08-20T02:34:54.606955Z",
            "url": "https://files.pythonhosted.org/packages/51/d4/5dbfa33cbe8f83b7fe8ea1e14986f0b59ce1736645c2a5c0cc3ab6eb40ca/tensorboard_plugin_profile-2.20.6-cp39-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-20 02:34:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "openxla",
    "github_project": "xprof",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "tensorboard-plugin-profile"
}
        
Elapsed time: 2.02559s