xprof-nightly


Namexprof-nightly JSON
Version 2.21.6a20250912 PyPI version JSON
download
home_pagehttps://github.com/openxla/xprof
SummaryXProf Profiler Plugin
upload_time2025-09-12 09:28:46
maintainerNone
docs_urlNone
authorGoogle Inc.
requires_python!=3.0.*,!=3.1.*,>=2.7
licenseApache 2.0
keywords jax pytorch xla tensorflow tensorboard xprof profile plugin
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # XProf (+ Tensorboard Profiler Plugin)
XProf includes a suite of profiling tools for [JAX](https://jax.readthedocs.io/), [TensorFlow](https://www.tensorflow.org/), and [PyTorch/XLA](https://github.com/pytorch/xla). These tools help you understand, debug and optimize machine learning programs to run on CPUs, GPUs and TPUs.

XProf offers a number of tools to analyse and visualize the
performance of your model across multiple devices. Some of the tools include:

*   **Overview**: A high-level overview of the performance of your model. This
    is an aggregated overview for your host and all devices. It includes:
    *   Performance summary and breakdown of step times.
    *   A graph of individual step times.
    *   High level details of the run environment.
*   **Trace Viewer**: Displays a timeline of the execution of your model that shows:
    *   The duration of each op.
    *   Which part of the system (host or device) executed an op.
    *   The communication between devices.
*   **Memory Profile Viewer**: Monitors the memory usage of your model.
*   **Graph Viewer**: A visualization of the graph structure of HLOs of your model.

To learn more about the various XProf tools, check out the [XProf documentation](https://openxla.org/xprof)

## Demo
First time user? Come and check out this [Colab Demo](https://docs.jaxstack.ai/en/latest/JAX_for_LLM_pretraining.html).

## Quick Start

### Prerequisites

* xprof >= 2.20.0
* (optional) TensorBoard >= 2.20.0

Note: XProf requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading).
Some charts and tables may be missing if you run XProf entirely offline on
your local machine, behind a corporate firewall, or in a datacenter.

If you use Google Cloud to run your workloads, we recommend the
[xprofiler tool](https://github.com/AI-Hypercomputer/cloud-diagnostics-xprof).
It provides a streamlined profile collection and viewing experience using VMs
running XProf.

### Installation

To get the most recent release version of XProf, install it via pip:

```
$ pip install xprof
```

Without TensorBoard:

```
$ xprof --logdir=profiler/demo --port=6006
```

With TensorBoard:

```
$ tensorboard --logdir=profiler/demo
```
If you are behind a corporate firewall, you may need to include the `--bind_all`
tensorboard flag.

Go to `localhost:6006/#profile` of your browser, you should now see the demo
overview page show up.
Congratulations! You're now ready to capture a profile.

## Nightlies

Every night, a nightly version of the package is released under the name of
`xprof-nightly`. This package contains the latest changes made by the XProf
developers.

To install the nightly version of profiler:

```
$ pip uninstall xprof tensorboard-plugin-profile
$ pip install xprof-nightly
```

## Next Steps

* [JAX Profiling Guide](https://jax.readthedocs.io/en/latest/profiling.html#xprof-tensorboard-profiling)
* [PyTorch/XLA Profiling Guide](https://cloud.google.com/tpu/docs/pytorch-xla-performance-profiling-tpu-vm)
* [TensorFlow Profiling Guide](https://tensorflow.org/guide/profiler)
* [Cloud TPU Profiling Guide](https://cloud.google.com/tpu/docs/cloud-tpu-tools)
* [Colab Tutorial](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras)
* [Tensorflow Colab](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/openxla/xprof",
    "name": "xprof-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
    "maintainer_email": null,
    "keywords": "jax pytorch xla tensorflow tensorboard xprof profile plugin",
    "author": "Google Inc.",
    "author_email": "packages@tensorflow.org",
    "download_url": null,
    "platform": null,
    "description": "# XProf (+ Tensorboard Profiler Plugin)\nXProf includes a suite of profiling tools for [JAX](https://jax.readthedocs.io/), [TensorFlow](https://www.tensorflow.org/), and [PyTorch/XLA](https://github.com/pytorch/xla). These tools help you understand, debug and optimize machine learning programs to run on CPUs, GPUs and TPUs.\n\nXProf offers a number of tools to analyse and visualize the\nperformance of your model across multiple devices. Some of the tools include:\n\n*   **Overview**: A high-level overview of the performance of your model. This\n    is an aggregated overview for your host and all devices. It includes:\n    *   Performance summary and breakdown of step times.\n    *   A graph of individual step times.\n    *   High level details of the run environment.\n*   **Trace Viewer**: Displays a timeline of the execution of your model that shows:\n    *   The duration of each op.\n    *   Which part of the system (host or device) executed an op.\n    *   The communication between devices.\n*   **Memory Profile Viewer**: Monitors the memory usage of your model.\n*   **Graph Viewer**: A visualization of the graph structure of HLOs of your model.\n\nTo learn more about the various XProf tools, check out the [XProf documentation](https://openxla.org/xprof)\n\n## Demo\nFirst time user? Come and check out this [Colab Demo](https://docs.jaxstack.ai/en/latest/JAX_for_LLM_pretraining.html).\n\n## Quick Start\n\n### Prerequisites\n\n* xprof >= 2.20.0\n* (optional) TensorBoard >= 2.20.0\n\nNote: XProf requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading).\nSome charts and tables may be missing if you run XProf entirely offline on\nyour local machine, behind a corporate firewall, or in a datacenter.\n\nIf you use Google Cloud to run your workloads, we recommend the\n[xprofiler tool](https://github.com/AI-Hypercomputer/cloud-diagnostics-xprof).\nIt provides a streamlined profile collection and viewing experience using VMs\nrunning XProf.\n\n### Installation\n\nTo get the most recent release version of XProf, install it via pip:\n\n```\n$ pip install xprof\n```\n\nWithout TensorBoard:\n\n```\n$ xprof --logdir=profiler/demo --port=6006\n```\n\nWith TensorBoard:\n\n```\n$ tensorboard --logdir=profiler/demo\n```\nIf you are behind a corporate firewall, you may need to include the `--bind_all`\ntensorboard flag.\n\nGo to `localhost:6006/#profile` of your browser, you should now see the demo\noverview page show up.\nCongratulations! You're now ready to capture a profile.\n\n## Nightlies\n\nEvery night, a nightly version of the package is released under the name of\n`xprof-nightly`. This package contains the latest changes made by the XProf\ndevelopers.\n\nTo install the nightly version of profiler:\n\n```\n$ pip uninstall xprof tensorboard-plugin-profile\n$ pip install xprof-nightly\n```\n\n## Next Steps\n\n* [JAX Profiling Guide](https://jax.readthedocs.io/en/latest/profiling.html#xprof-tensorboard-profiling)\n* [PyTorch/XLA Profiling Guide](https://cloud.google.com/tpu/docs/pytorch-xla-performance-profiling-tpu-vm)\n* [TensorFlow Profiling Guide](https://tensorflow.org/guide/profiler)\n* [Cloud TPU Profiling Guide](https://cloud.google.com/tpu/docs/cloud-tpu-tools)\n* [Colab Tutorial](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras)\n* [Tensorflow Colab](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras)\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "XProf Profiler Plugin",
    "version": "2.21.6a20250912",
    "project_urls": {
        "Homepage": "https://github.com/openxla/xprof"
    },
    "split_keywords": [
        "jax",
        "pytorch",
        "xla",
        "tensorflow",
        "tensorboard",
        "xprof",
        "profile",
        "plugin"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d705b03daeb4b4a26047d22548ba79e70458d1cb71f1d6023972de5dd428721b",
                "md5": "b7f22a85f6dec72e46b3aac98d559195",
                "sha256": "47849a061f74e2249d3ea59812b9f2dfa4a85e105aa1a65edbde292dd2e61379"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp310-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "b7f22a85f6dec72e46b3aac98d559195",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13514186,
            "upload_time": "2025-09-12T09:28:46",
            "upload_time_iso_8601": "2025-09-12T09:28:46.298805Z",
            "url": "https://files.pythonhosted.org/packages/d7/05/b03daeb4b4a26047d22548ba79e70458d1cb71f1d6023972de5dd428721b/xprof_nightly-2.21.6a20250912-cp310-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fde53aa9b5456ee5f4eecaeedbe986aa700b244b177726d9be5c77af56907177",
                "md5": "b07039db3fc22eb92bac370a2200da71",
                "sha256": "b7598e1433a80118acfe691c014069983d472dd52662242ebe04456bf60f6d06"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp310-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "b07039db3fc22eb92bac370a2200da71",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13412662,
            "upload_time": "2025-09-12T09:32:43",
            "upload_time_iso_8601": "2025-09-12T09:32:43.171853Z",
            "url": "https://files.pythonhosted.org/packages/fd/e5/3aa9b5456ee5f4eecaeedbe986aa700b244b177726d9be5c77af56907177/xprof_nightly-2.21.6a20250912-cp310-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e17154537962251d30e9c359824e511d187e982af3c4591a01d4ba1f9320fcba",
                "md5": "7c4e836323c627341d7bfedea8bfb3f7",
                "sha256": "1543d1e3b3e43a7337997331a600b20a863b73d641b1fd8ef4932109c0dee3bb"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp311-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "7c4e836323c627341d7bfedea8bfb3f7",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13514891,
            "upload_time": "2025-09-12T09:22:04",
            "upload_time_iso_8601": "2025-09-12T09:22:04.789154Z",
            "url": "https://files.pythonhosted.org/packages/e1/71/54537962251d30e9c359824e511d187e982af3c4591a01d4ba1f9320fcba/xprof_nightly-2.21.6a20250912-cp311-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "04d28dbd4c188aa48402ab3b9fbdf6e4ad84cbce4c8181b0e04b6e94785e7f06",
                "md5": "9bbd16f0f5e6102292356028a6549c62",
                "sha256": "925f3da03c5e26e89f4c28e714a381f399e64e6e554cac2dd08e07b4b253b19e"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp311-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "9bbd16f0f5e6102292356028a6549c62",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13413894,
            "upload_time": "2025-09-12T09:34:30",
            "upload_time_iso_8601": "2025-09-12T09:34:30.326072Z",
            "url": "https://files.pythonhosted.org/packages/04/d2/8dbd4c188aa48402ab3b9fbdf6e4ad84cbce4c8181b0e04b6e94785e7f06/xprof_nightly-2.21.6a20250912-cp311-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fbae8e05d96fae8f0ab2e57143a1dca4050eb3349227a22cf44d27c3271b6ee2",
                "md5": "3807d1a59edf3815cf5687b0b35b32e3",
                "sha256": "becf7f22f9a631a2bf2a1e9f54a3abfddaeb8f24d3f1a9273121a43c56b1b638"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp312-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "3807d1a59edf3815cf5687b0b35b32e3",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13515041,
            "upload_time": "2025-09-12T09:29:15",
            "upload_time_iso_8601": "2025-09-12T09:29:15.705331Z",
            "url": "https://files.pythonhosted.org/packages/fb/ae/8e05d96fae8f0ab2e57143a1dca4050eb3349227a22cf44d27c3271b6ee2/xprof_nightly-2.21.6a20250912-cp312-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4000bf944f092aa8be9d16e858e40bcdc07450663bdb9a225d79c7d36fd343f2",
                "md5": "840ee2ac3b7907b12a1f0fab8859ea22",
                "sha256": "af1ae3f33a542259d5c3f3df852130c02a3f9ea0839327991b7c74b440818b8c"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp312-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "840ee2ac3b7907b12a1f0fab8859ea22",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13413290,
            "upload_time": "2025-09-12T09:31:47",
            "upload_time_iso_8601": "2025-09-12T09:31:47.874861Z",
            "url": "https://files.pythonhosted.org/packages/40/00/bf944f092aa8be9d16e858e40bcdc07450663bdb9a225d79c7d36fd343f2/xprof_nightly-2.21.6a20250912-cp312-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5808c02190860f643ca31e71b08b312b45382295f06ecf4ef94f1afbe957052a",
                "md5": "b3b302043ad58144de32997271aa9a5d",
                "sha256": "ae02f7d2a35ae82007659ed94fdc87d5d785758345248e2548215f50eed5f4b0"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp313-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "b3b302043ad58144de32997271aa9a5d",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13514869,
            "upload_time": "2025-09-12T09:28:46",
            "upload_time_iso_8601": "2025-09-12T09:28:46.241818Z",
            "url": "https://files.pythonhosted.org/packages/58/08/c02190860f643ca31e71b08b312b45382295f06ecf4ef94f1afbe957052a/xprof_nightly-2.21.6a20250912-cp313-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "aefdcd07989ae63c5d270b28c018fee05617dbbc367516e09c5a0652938b8a11",
                "md5": "a198236995bd646b9c99c86d24d643e5",
                "sha256": "6b733a59ecf80bac2ab515a2c13fed41fdbf9836f580f14e5fb9cc6c81d2565e"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp313-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "a198236995bd646b9c99c86d24d643e5",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13413311,
            "upload_time": "2025-09-12T09:33:42",
            "upload_time_iso_8601": "2025-09-12T09:33:42.474161Z",
            "url": "https://files.pythonhosted.org/packages/ae/fd/cd07989ae63c5d270b28c018fee05617dbbc367516e09c5a0652938b8a11/xprof_nightly-2.21.6a20250912-cp313-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a53f0e3b75b49944be6bb2a4e373ce1cc4de27d48d3bb48c3e89b873f3d76f19",
                "md5": "a462ec2a1fbefd0c1d473a46f4b6043c",
                "sha256": "d1518a46a84aa24be980333123eb3bada33fc04632a356e0e6573a7cc327727b"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp39-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "a462ec2a1fbefd0c1d473a46f4b6043c",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13514125,
            "upload_time": "2025-09-12T09:16:49",
            "upload_time_iso_8601": "2025-09-12T09:16:49.449218Z",
            "url": "https://files.pythonhosted.org/packages/a5/3f/0e3b75b49944be6bb2a4e373ce1cc4de27d48d3bb48c3e89b873f3d76f19/xprof_nightly-2.21.6a20250912-cp39-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0ef5a0b2ed0b5c1eb6be889314edb51f4d5994b362abb160c00daf5dd49f45e0",
                "md5": "027c4fc57f6e542f90f3b9b8d8be2d6e",
                "sha256": "85d0e5ab2e5c94359ca8246a15181a9242838ff21407aa08e72d65032584212e"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.6a20250912-cp39-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "027c4fc57f6e542f90f3b9b8d8be2d6e",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 13412647,
            "upload_time": "2025-09-12T09:34:15",
            "upload_time_iso_8601": "2025-09-12T09:34:15.958350Z",
            "url": "https://files.pythonhosted.org/packages/0e/f5/a0b2ed0b5c1eb6be889314edb51f4d5994b362abb160c00daf5dd49f45e0/xprof_nightly-2.21.6a20250912-cp39-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-12 09:28:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "openxla",
    "github_project": "xprof",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "xprof-nightly"
}
        
Elapsed time: 1.16962s