xprof-nightly


Namexprof-nightly JSON
Version 2.21.4a20250727 PyPI version JSON
download
home_pagehttps://github.com/openxla/xprof
SummaryXProf Profiler Plugin
upload_time2025-07-27 09:31:46
maintainerNone
docs_urlNone
authorGoogle Inc.
requires_python!=3.0.*,!=3.1.*,>=2.7
licenseApache 2.0
keywords jax pytorch xla tensorflow tensorboard xprof profile plugin
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # XProf (+ Tensorboard Profiler Plugin)
XProf includes a suite of tools for [JAX](https://jax.readthedocs.io/), [TensorFlow](https://www.tensorflow.org/), and [PyTorch/XLA](https://github.com/pytorch/xla). These tools help you understand, debug and optimize programs to run on CPUs, GPUs and TPUs.

XProf offers a number of tools to analyse and visualize the
performance of your model across multiple devices. Some of the tools include:

*   **Overview**: A high-level overview of the performance of your model. This
    is an aggregated overview for your host and all devices. It includes:
    *   Performance summary and breakdown of step times.
    *   A graph of individual step times.
    *   A table of the top 10 most expensive operations.
*   **Trace Viewer**: Displays a timeline of the execution of your model that shows:
    *   The duration of each op.
    *   Which part of the system (host or device) executed an op.
    *   The communication between devices.
*   **Memory Profile Viewer**: Monitors the memory usage of your model.
*   **Graph Viewer**: A visualization of the graph structure of HLOs of your model.

## Demo
First time user? Come and check out this [Colab Demo](https://docs.jaxstack.ai/en/latest/JAX_for_LLM_pretraining.html).

## Prerequisites

* tensorboard-plugin-profile >= 2.19.0
* (optional) TensorBoard >= 2.19.0

Note: XProf requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading).
Some charts and tables may be missing if you run TensorBoard entirely offline on
your local machine, behind a corporate firewall, or in a datacenter.

To profile on a **single GPU** system, the following NVIDIA software must be
installed on your system:

1. NVIDIA GPU drivers and CUDA Toolkit:
    * CUDA 12.5 requires 525.60.13 and higher.
2. Ensure that CUPTI 10.1 exists on the path.

   ```shell
   $ /sbin/ldconfig -N -v $(sed 's/:/ /g' <<< $LD_LIBRARY_PATH) | grep libcupti
   ```

   If you don't see `libcupti.so.12.5` on the path, prepend its installation
   directory to the $LD_LIBRARY_PATH environmental variable:

   ```shell
   $ export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
   ```
   Run the ldconfig command above again to verify that the CUPTI 12.5 library is
   found.

   If this doesn't work, try:
   ```shell
   $ sudo apt-get install libcupti-dev
   ```

To profile a system with **multiple GPUs**, see this [guide](https://github.com/tensorflow/profiler/blob/master/docs/profile_multi_gpu.md) for details.

To profile multi-worker GPU configurations, profile individual workers
independently.

To profile cloud TPUs, you must have access to Google Cloud TPUs.

## Quick Start
In order to get the latest version of the profiler plugin, you can install the
nightly package.

To install the nightly version of profiler:

```
$ pip uninstall xprof
$ pip install xprof-nightly
```

Without TensorBoard:
```
$ xprof --logdir=profiler/demo --port=6006
```

With TensorBoard:

```
$ tensorboard --logdir=profiler/demo
```
If you are behind a corporate firewall, you may need to include the `--bind_all`
tensorboard flag.

Go to `localhost:6006/#profile` of your browser, you should now see the demo
overview page show up.
Congratulations! You're now ready to capture a profile.

## Next Steps

* JAX Profiling Guide: https://jax.readthedocs.io/en/latest/profiling.html
* TensorFlow Profiling Guide: https://tensorflow.org/guide/profiler
* Cloud TPU Profiling Guide: https://cloud.google.com/tpu/docs/cloud-tpu-tools
* Colab Tutorial: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
* Tensorflow Colab: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/openxla/xprof",
    "name": "xprof-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
    "maintainer_email": null,
    "keywords": "jax pytorch xla tensorflow tensorboard xprof profile plugin",
    "author": "Google Inc.",
    "author_email": "packages@tensorflow.org",
    "download_url": "https://files.pythonhosted.org/packages/d0/43/3deb71725c8a076f74c4fc1964cbf9aa2ee4bf158eec5519f3866aeed2be/xprof_nightly-2.21.4a20250727.tar.gz",
    "platform": null,
    "description": "# XProf (+ Tensorboard Profiler Plugin)\nXProf includes a suite of tools for [JAX](https://jax.readthedocs.io/), [TensorFlow](https://www.tensorflow.org/), and [PyTorch/XLA](https://github.com/pytorch/xla). These tools help you understand, debug and optimize programs to run on CPUs, GPUs and TPUs.\n\nXProf offers a number of tools to analyse and visualize the\nperformance of your model across multiple devices. Some of the tools include:\n\n*   **Overview**: A high-level overview of the performance of your model. This\n    is an aggregated overview for your host and all devices. It includes:\n    *   Performance summary and breakdown of step times.\n    *   A graph of individual step times.\n    *   A table of the top 10 most expensive operations.\n*   **Trace Viewer**: Displays a timeline of the execution of your model that shows:\n    *   The duration of each op.\n    *   Which part of the system (host or device) executed an op.\n    *   The communication between devices.\n*   **Memory Profile Viewer**: Monitors the memory usage of your model.\n*   **Graph Viewer**: A visualization of the graph structure of HLOs of your model.\n\n## Demo\nFirst time user? Come and check out this [Colab Demo](https://docs.jaxstack.ai/en/latest/JAX_for_LLM_pretraining.html).\n\n## Prerequisites\n\n* tensorboard-plugin-profile >= 2.19.0\n* (optional) TensorBoard >= 2.19.0\n\nNote: XProf requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading).\nSome charts and tables may be missing if you run TensorBoard entirely offline on\nyour local machine, behind a corporate firewall, or in a datacenter.\n\nTo profile on a **single GPU** system, the following NVIDIA software must be\ninstalled on your system:\n\n1. NVIDIA GPU drivers and CUDA Toolkit:\n    * CUDA 12.5 requires 525.60.13 and higher.\n2. Ensure that CUPTI 10.1 exists on the path.\n\n   ```shell\n   $ /sbin/ldconfig -N -v $(sed 's/:/ /g' <<< $LD_LIBRARY_PATH) | grep libcupti\n   ```\n\n   If you don't see `libcupti.so.12.5` on the path, prepend its installation\n   directory to the $LD_LIBRARY_PATH environmental variable:\n\n   ```shell\n   $ export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH\n   ```\n   Run the ldconfig command above again to verify that the CUPTI 12.5 library is\n   found.\n\n   If this doesn't work, try:\n   ```shell\n   $ sudo apt-get install libcupti-dev\n   ```\n\nTo profile a system with **multiple GPUs**, see this [guide](https://github.com/tensorflow/profiler/blob/master/docs/profile_multi_gpu.md) for details.\n\nTo profile multi-worker GPU configurations, profile individual workers\nindependently.\n\nTo profile cloud TPUs, you must have access to Google Cloud TPUs.\n\n## Quick Start\nIn order to get the latest version of the profiler plugin, you can install the\nnightly package.\n\nTo install the nightly version of profiler:\n\n```\n$ pip uninstall xprof\n$ pip install xprof-nightly\n```\n\nWithout TensorBoard:\n```\n$ xprof --logdir=profiler/demo --port=6006\n```\n\nWith TensorBoard:\n\n```\n$ tensorboard --logdir=profiler/demo\n```\nIf you are behind a corporate firewall, you may need to include the `--bind_all`\ntensorboard flag.\n\nGo to `localhost:6006/#profile` of your browser, you should now see the demo\noverview page show up.\nCongratulations! You're now ready to capture a profile.\n\n## Next Steps\n\n* JAX Profiling Guide: https://jax.readthedocs.io/en/latest/profiling.html\n* TensorFlow Profiling Guide: https://tensorflow.org/guide/profiler\n* Cloud TPU Profiling Guide: https://cloud.google.com/tpu/docs/cloud-tpu-tools\n* Colab Tutorial: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras\n* Tensorflow Colab: https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "XProf Profiler Plugin",
    "version": "2.21.4a20250727",
    "project_urls": {
        "Homepage": "https://github.com/openxla/xprof"
    },
    "split_keywords": [
        "jax",
        "pytorch",
        "xla",
        "tensorflow",
        "tensorboard",
        "xprof",
        "profile",
        "plugin"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "59963997667f9551bb8504c1f11da09573a1b4d1bcadbc75d5a8f3db868e72ae",
                "md5": "23a026ae2982cd4042ef59cd7ab88ca6",
                "sha256": "aca2d6232c2d01a738b8233ea1dfb12ab8596e2e384b277eaee352af4504bdc8"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-cp310-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "23a026ae2982cd4042ef59cd7ab88ca6",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 10902202,
            "upload_time": "2025-07-27T09:11:59",
            "upload_time_iso_8601": "2025-07-27T09:11:59.269152Z",
            "url": "https://files.pythonhosted.org/packages/59/96/3997667f9551bb8504c1f11da09573a1b4d1bcadbc75d5a8f3db868e72ae/xprof_nightly-2.21.4a20250727-cp310-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4d2ef4fd4b1e47e5647e357d2fa4678bcf7e3fb5c40a0d69e27fa7106f6a0819",
                "md5": "e33ae9f591a0c42da8f8fb30e7bd492a",
                "sha256": "faa6341470b674bf0c0b5b5c032a2163019340681c5c26d5c96edc3b3930eb22"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-cp310-none-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "e33ae9f591a0c42da8f8fb30e7bd492a",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 12766208,
            "upload_time": "2025-07-27T09:33:30",
            "upload_time_iso_8601": "2025-07-27T09:33:30.288013Z",
            "url": "https://files.pythonhosted.org/packages/4d/2e/f4fd4b1e47e5647e357d2fa4678bcf7e3fb5c40a0d69e27fa7106f6a0819/xprof_nightly-2.21.4a20250727-cp310-none-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "bf9eeb3135ae9d3d085e8b40e9c2da1fd754100e320a7a26d3ddc16a90c1fb73",
                "md5": "c202516935360e96ba543618f91b31d5",
                "sha256": "4e2a4b4c531728c1a6e4203b810c76cd24ee022e644d1485d66722732911a0f3"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-cp310-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "c202516935360e96ba543618f91b31d5",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 10684866,
            "upload_time": "2025-07-27T09:27:37",
            "upload_time_iso_8601": "2025-07-27T09:27:37.084047Z",
            "url": "https://files.pythonhosted.org/packages/bf/9e/eb3135ae9d3d085e8b40e9c2da1fd754100e320a7a26d3ddc16a90c1fb73/xprof_nightly-2.21.4a20250727-cp310-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c3d43dd720042cefde6ea9024be4d633f0f4aba2c1334c2f814efd944d5bedb6",
                "md5": "11812e957bc9774e33511fc4be5245c4",
                "sha256": "906a55b5a819b2eca271dd8eb32154c006f7d5b78c43e4000590d06a385ce037"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-cp311-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "11812e957bc9774e33511fc4be5245c4",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 10904347,
            "upload_time": "2025-07-27T09:11:57",
            "upload_time_iso_8601": "2025-07-27T09:11:57.877482Z",
            "url": "https://files.pythonhosted.org/packages/c3/d4/3dd720042cefde6ea9024be4d633f0f4aba2c1334c2f814efd944d5bedb6/xprof_nightly-2.21.4a20250727-cp311-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9ee65420b742dcede2d8b123f8850f65b1074fb9d1fc0e1a4161ecf76504c2cf",
                "md5": "2482ca57c189ea634107afcff85951cf",
                "sha256": "bb72cbf88dba97e0a51a4ddf3f32455887ba91987017824dd81747d4e2e9f8a9"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-cp311-none-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "2482ca57c189ea634107afcff85951cf",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 12768441,
            "upload_time": "2025-07-27T09:36:08",
            "upload_time_iso_8601": "2025-07-27T09:36:08.749315Z",
            "url": "https://files.pythonhosted.org/packages/9e/e6/5420b742dcede2d8b123f8850f65b1074fb9d1fc0e1a4161ecf76504c2cf/xprof_nightly-2.21.4a20250727-cp311-none-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "60046022383081e6907faee33e9d700dfeb4f1a5762a82f7b1d2154d02ab7165",
                "md5": "3e268b9e6f50c38954d470c12d317e82",
                "sha256": "e9028a49e3a5636abe553b09e47dd008c4bce2162cb5c1ed0cb30cdcdd824437"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-cp311-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "3e268b9e6f50c38954d470c12d317e82",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 10686357,
            "upload_time": "2025-07-27T09:38:09",
            "upload_time_iso_8601": "2025-07-27T09:38:09.554097Z",
            "url": "https://files.pythonhosted.org/packages/60/04/6022383081e6907faee33e9d700dfeb4f1a5762a82f7b1d2154d02ab7165/xprof_nightly-2.21.4a20250727-cp311-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ad7b43146bc5e3d48983719f54138e3c1868db81a9c08f89352d70e0e61f86ef",
                "md5": "f90379fc61e680c4f5472ff93b639013",
                "sha256": "be1487d9a68fe38aad73fb727562d4f6f5fc201326cb867c5849f28ddc1f1a96"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-cp312-none-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "f90379fc61e680c4f5472ff93b639013",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 10904561,
            "upload_time": "2025-07-27T09:11:46",
            "upload_time_iso_8601": "2025-07-27T09:11:46.816469Z",
            "url": "https://files.pythonhosted.org/packages/ad/7b/43146bc5e3d48983719f54138e3c1868db81a9c08f89352d70e0e61f86ef/xprof_nightly-2.21.4a20250727-cp312-none-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1e7bfb8f1ea2be4df31000aabd841c09fe6971d10870e5695757b2ad6c7c45e4",
                "md5": "17d49d1e73b045da03175467072aa0ef",
                "sha256": "83ce032642c7751b30ef9ed025c8651a7d9d78579bdcace42f4cb025a3a60964"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-cp312-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "17d49d1e73b045da03175467072aa0ef",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 10685534,
            "upload_time": "2025-07-27T09:15:57",
            "upload_time_iso_8601": "2025-07-27T09:15:57.255449Z",
            "url": "https://files.pythonhosted.org/packages/1e/7b/fb8f1ea2be4df31000aabd841c09fe6971d10870e5695757b2ad6c7c45e4/xprof_nightly-2.21.4a20250727-cp312-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6f72831ce1831c516a1399be397ea58c5c8748f0f53f88a76dcb03f24f56ccf3",
                "md5": "593be548923a84a90ba078f63fbba459",
                "sha256": "e661ef0bc56441539892f9fae269653f3d2d631d2a67c0d11cb217b72f77e9b2"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-cp39-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "593be548923a84a90ba078f63fbba459",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 10684852,
            "upload_time": "2025-07-27T09:38:15",
            "upload_time_iso_8601": "2025-07-27T09:38:15.644969Z",
            "url": "https://files.pythonhosted.org/packages/6f/72/831ce1831c516a1399be397ea58c5c8748f0f53f88a76dcb03f24f56ccf3/xprof_nightly-2.21.4a20250727-cp39-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c3eeb47af2cc9799b08e05398d7414f9dfaf43408e20c4176c12925fbfb2ee43",
                "md5": "44f2508502f7d0e13f11aeb7d2ea7d83",
                "sha256": "7ca3208a53701c515d1785915e6f482ffd645b46f544f2a2d8244d2842a55651"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "44f2508502f7d0e13f11aeb7d2ea7d83",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 6086488,
            "upload_time": "2025-07-27T09:31:44",
            "upload_time_iso_8601": "2025-07-27T09:31:44.904818Z",
            "url": "https://files.pythonhosted.org/packages/c3/ee/b47af2cc9799b08e05398d7414f9dfaf43408e20c4176c12925fbfb2ee43/xprof_nightly-2.21.4a20250727-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d0433deb71725c8a076f74c4fc1964cbf9aa2ee4bf158eec5519f3866aeed2be",
                "md5": "6fac290d6dc3f55886e2c9d7383152f6",
                "sha256": "e81f50d05de20cf44da02e51c69c3553186c496546cd222dbe6600fed7e9adf1"
            },
            "downloads": -1,
            "filename": "xprof_nightly-2.21.4a20250727.tar.gz",
            "has_sig": false,
            "md5_digest": "6fac290d6dc3f55886e2c9d7383152f6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "!=3.0.*,!=3.1.*,>=2.7",
            "size": 5996767,
            "upload_time": "2025-07-27T09:31:46",
            "upload_time_iso_8601": "2025-07-27T09:31:46.701475Z",
            "url": "https://files.pythonhosted.org/packages/d0/43/3deb71725c8a076f74c4fc1964cbf9aa2ee4bf158eec5519f3866aeed2be/xprof_nightly-2.21.4a20250727.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-27 09:31:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "openxla",
    "github_project": "xprof",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "xprof-nightly"
}
        
Elapsed time: 1.45219s