fbgemm-gpu-nightly-cpu


Namefbgemm-gpu-nightly-cpu JSON
Version 2025.10.26 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-10-26 13:33:15
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly-cpu",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.10.26",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5a10c89028a6dc50bf2a133646d0aa0e8763e7d21906f5db1a471c60800dab84",
                "md5": "a3ca2391d433d8926328919fba106cc0",
                "sha256": "eb1fc3623fead9f44a106fc299f3489343657dd1aa9e8b79be5f44c5e1519745"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp310-cp310-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "a3ca2391d433d8926328919fba106cc0",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 4552874,
            "upload_time": "2025-10-26T13:33:15",
            "upload_time_iso_8601": "2025-10-26T13:33:15.844494Z",
            "url": "https://files.pythonhosted.org/packages/5a/10/c89028a6dc50bf2a133646d0aa0e8763e7d21906f5db1a471c60800dab84/fbgemm_gpu_nightly_cpu-2025.10.26-cp310-cp310-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "25d3dd7359c79f19e813e2cbe7944581c83410a081f01b1dfc92bebf581ec5fd",
                "md5": "fa30e61620005528f60fad722848990a",
                "sha256": "1a52a1e8ac78bc4f3df98f8c75b2efad3fe3fbf8b81db9ff8c8ca87049aae712"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "fa30e61620005528f60fad722848990a",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 5818048,
            "upload_time": "2025-10-26T13:32:10",
            "upload_time_iso_8601": "2025-10-26T13:32:10.340260Z",
            "url": "https://files.pythonhosted.org/packages/25/d3/dd7359c79f19e813e2cbe7944581c83410a081f01b1dfc92bebf581ec5fd/fbgemm_gpu_nightly_cpu-2025.10.26-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b75fedcf878cecf263f39e2d850170b9630fae4e04724d5fd58dc3bbd4c3cdc3",
                "md5": "330f91cc71013dcbe884411c64406558",
                "sha256": "bdd90f1eda3e771e39b3443d4c1747dac55ea2bb56cf64f93d20de246e396d15"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp311-cp311-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "330f91cc71013dcbe884411c64406558",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 4552886,
            "upload_time": "2025-10-26T13:28:18",
            "upload_time_iso_8601": "2025-10-26T13:28:18.682485Z",
            "url": "https://files.pythonhosted.org/packages/b7/5f/edcf878cecf263f39e2d850170b9630fae4e04724d5fd58dc3bbd4c3cdc3/fbgemm_gpu_nightly_cpu-2025.10.26-cp311-cp311-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9492a0e3cccef3844bf1660dadab6508cce60cbfb9241bf3710499679ea3bcdc",
                "md5": "04192ac242627bf7dbbb66aa67ac2785",
                "sha256": "701fc3578b3a90fcdc40153d6ee734da251818ae5bfc3cf526883ef647aebd08"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "04192ac242627bf7dbbb66aa67ac2785",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 5818060,
            "upload_time": "2025-10-26T13:31:05",
            "upload_time_iso_8601": "2025-10-26T13:31:05.513941Z",
            "url": "https://files.pythonhosted.org/packages/94/92/a0e3cccef3844bf1660dadab6508cce60cbfb9241bf3710499679ea3bcdc/fbgemm_gpu_nightly_cpu-2025.10.26-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2d30820d58ae3d6fd3f18db3676a6cf0e1a4b938df55d0d6abfb61f4fdb25429",
                "md5": "0499fa7786e92846c5141d1ec3601a1d",
                "sha256": "8edaf1051269dc5594a3ba4dc97ecfcb822d66bc1ad049cf462a0d0233d89f71"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp312-cp312-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "0499fa7786e92846c5141d1ec3601a1d",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 4552893,
            "upload_time": "2025-10-26T13:26:52",
            "upload_time_iso_8601": "2025-10-26T13:26:52.670087Z",
            "url": "https://files.pythonhosted.org/packages/2d/30/820d58ae3d6fd3f18db3676a6cf0e1a4b938df55d0d6abfb61f4fdb25429/fbgemm_gpu_nightly_cpu-2025.10.26-cp312-cp312-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1adc77cd413945131dd3f79fef897c812d1a55d692123cdcc8471205c7fb608d",
                "md5": "0821ca432f6505469f7e505433c4b567",
                "sha256": "d754bd9d525a8cc20e8f7bf5de3e4f1453281b498110f02d2dc5bcf9ea22bea3"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0821ca432f6505469f7e505433c4b567",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 5818063,
            "upload_time": "2025-10-26T13:30:36",
            "upload_time_iso_8601": "2025-10-26T13:30:36.633907Z",
            "url": "https://files.pythonhosted.org/packages/1a/dc/77cd413945131dd3f79fef897c812d1a55d692123cdcc8471205c7fb608d/fbgemm_gpu_nightly_cpu-2025.10.26-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3c10a45ab4fbaee581d5837e64c9f8df94a49a51ca303854263adeafa472acd2",
                "md5": "8929d5fee94c24369bdc7099c7a3819c",
                "sha256": "3399c673854ef967bb1e7efa2ba72170f8f4a509fe0f0b7df37f0cdae40fcf03"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp313-cp313-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "8929d5fee94c24369bdc7099c7a3819c",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 4552892,
            "upload_time": "2025-10-26T13:31:54",
            "upload_time_iso_8601": "2025-10-26T13:31:54.735009Z",
            "url": "https://files.pythonhosted.org/packages/3c/10/a45ab4fbaee581d5837e64c9f8df94a49a51ca303854263adeafa472acd2/fbgemm_gpu_nightly_cpu-2025.10.26-cp313-cp313-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ec5170a77baeb2043128e4192535e10c8a3e580e207012142c8c2a6aefa28107",
                "md5": "55c08cf59376e781212550f40b3466bc",
                "sha256": "4535a16349f9c430c7d590a0fd37ebee0326172181b51cbcbe0ec96e824aaceb"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "55c08cf59376e781212550f40b3466bc",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 5818064,
            "upload_time": "2025-10-26T13:31:07",
            "upload_time_iso_8601": "2025-10-26T13:31:07.546583Z",
            "url": "https://files.pythonhosted.org/packages/ec/51/70a77baeb2043128e4192535e10c8a3e580e207012142c8c2a6aefa28107/fbgemm_gpu_nightly_cpu-2025.10.26-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-26 13:33:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly-cpu"
}
        
Elapsed time: 3.12289s