# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly-cpu",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.10.26",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "5a10c89028a6dc50bf2a133646d0aa0e8763e7d21906f5db1a471c60800dab84",
"md5": "a3ca2391d433d8926328919fba106cc0",
"sha256": "eb1fc3623fead9f44a106fc299f3489343657dd1aa9e8b79be5f44c5e1519745"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp310-cp310-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "a3ca2391d433d8926328919fba106cc0",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 4552874,
"upload_time": "2025-10-26T13:33:15",
"upload_time_iso_8601": "2025-10-26T13:33:15.844494Z",
"url": "https://files.pythonhosted.org/packages/5a/10/c89028a6dc50bf2a133646d0aa0e8763e7d21906f5db1a471c60800dab84/fbgemm_gpu_nightly_cpu-2025.10.26-cp310-cp310-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "25d3dd7359c79f19e813e2cbe7944581c83410a081f01b1dfc92bebf581ec5fd",
"md5": "fa30e61620005528f60fad722848990a",
"sha256": "1a52a1e8ac78bc4f3df98f8c75b2efad3fe3fbf8b81db9ff8c8ca87049aae712"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "fa30e61620005528f60fad722848990a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 5818048,
"upload_time": "2025-10-26T13:32:10",
"upload_time_iso_8601": "2025-10-26T13:32:10.340260Z",
"url": "https://files.pythonhosted.org/packages/25/d3/dd7359c79f19e813e2cbe7944581c83410a081f01b1dfc92bebf581ec5fd/fbgemm_gpu_nightly_cpu-2025.10.26-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b75fedcf878cecf263f39e2d850170b9630fae4e04724d5fd58dc3bbd4c3cdc3",
"md5": "330f91cc71013dcbe884411c64406558",
"sha256": "bdd90f1eda3e771e39b3443d4c1747dac55ea2bb56cf64f93d20de246e396d15"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp311-cp311-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "330f91cc71013dcbe884411c64406558",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 4552886,
"upload_time": "2025-10-26T13:28:18",
"upload_time_iso_8601": "2025-10-26T13:28:18.682485Z",
"url": "https://files.pythonhosted.org/packages/b7/5f/edcf878cecf263f39e2d850170b9630fae4e04724d5fd58dc3bbd4c3cdc3/fbgemm_gpu_nightly_cpu-2025.10.26-cp311-cp311-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9492a0e3cccef3844bf1660dadab6508cce60cbfb9241bf3710499679ea3bcdc",
"md5": "04192ac242627bf7dbbb66aa67ac2785",
"sha256": "701fc3578b3a90fcdc40153d6ee734da251818ae5bfc3cf526883ef647aebd08"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "04192ac242627bf7dbbb66aa67ac2785",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 5818060,
"upload_time": "2025-10-26T13:31:05",
"upload_time_iso_8601": "2025-10-26T13:31:05.513941Z",
"url": "https://files.pythonhosted.org/packages/94/92/a0e3cccef3844bf1660dadab6508cce60cbfb9241bf3710499679ea3bcdc/fbgemm_gpu_nightly_cpu-2025.10.26-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2d30820d58ae3d6fd3f18db3676a6cf0e1a4b938df55d0d6abfb61f4fdb25429",
"md5": "0499fa7786e92846c5141d1ec3601a1d",
"sha256": "8edaf1051269dc5594a3ba4dc97ecfcb822d66bc1ad049cf462a0d0233d89f71"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp312-cp312-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "0499fa7786e92846c5141d1ec3601a1d",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 4552893,
"upload_time": "2025-10-26T13:26:52",
"upload_time_iso_8601": "2025-10-26T13:26:52.670087Z",
"url": "https://files.pythonhosted.org/packages/2d/30/820d58ae3d6fd3f18db3676a6cf0e1a4b938df55d0d6abfb61f4fdb25429/fbgemm_gpu_nightly_cpu-2025.10.26-cp312-cp312-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1adc77cd413945131dd3f79fef897c812d1a55d692123cdcc8471205c7fb608d",
"md5": "0821ca432f6505469f7e505433c4b567",
"sha256": "d754bd9d525a8cc20e8f7bf5de3e4f1453281b498110f02d2dc5bcf9ea22bea3"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "0821ca432f6505469f7e505433c4b567",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 5818063,
"upload_time": "2025-10-26T13:30:36",
"upload_time_iso_8601": "2025-10-26T13:30:36.633907Z",
"url": "https://files.pythonhosted.org/packages/1a/dc/77cd413945131dd3f79fef897c812d1a55d692123cdcc8471205c7fb608d/fbgemm_gpu_nightly_cpu-2025.10.26-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3c10a45ab4fbaee581d5837e64c9f8df94a49a51ca303854263adeafa472acd2",
"md5": "8929d5fee94c24369bdc7099c7a3819c",
"sha256": "3399c673854ef967bb1e7efa2ba72170f8f4a509fe0f0b7df37f0cdae40fcf03"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp313-cp313-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "8929d5fee94c24369bdc7099c7a3819c",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 4552892,
"upload_time": "2025-10-26T13:31:54",
"upload_time_iso_8601": "2025-10-26T13:31:54.735009Z",
"url": "https://files.pythonhosted.org/packages/3c/10/a45ab4fbaee581d5837e64c9f8df94a49a51ca303854263adeafa472acd2/fbgemm_gpu_nightly_cpu-2025.10.26-cp313-cp313-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ec5170a77baeb2043128e4192535e10c8a3e580e207012142c8c2a6aefa28107",
"md5": "55c08cf59376e781212550f40b3466bc",
"sha256": "4535a16349f9c430c7d590a0fd37ebee0326172181b51cbcbe0ec96e824aaceb"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2025.10.26-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "55c08cf59376e781212550f40b3466bc",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 5818064,
"upload_time": "2025-10-26T13:31:07",
"upload_time_iso_8601": "2025-10-26T13:31:07.546583Z",
"url": "https://files.pythonhosted.org/packages/ec/51/70a77baeb2043128e4192535e10c8a3e580e207012142c8c2a6aefa28107/fbgemm_gpu_nightly_cpu-2025.10.26-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-26 13:33:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly-cpu"
}