# FBGEMM_GPU
[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly-cpu",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2024.12.18",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4ee81f149f3c169bf8996b2c36ffcc30cf6af2891deec6f6679d63ed212aef35",
"md5": "f0835e51ee11549ce0f6185d124f37d0",
"sha256": "7cd9da05ffbd90e10dfaa9b71b38f0c140b41ad49deed58db495506aea6938f9"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2024.12.18-cp310-cp310-manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "f0835e51ee11549ce0f6185d124f37d0",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 2693304,
"upload_time": "2024-12-18T13:34:54",
"upload_time_iso_8601": "2024-12-18T13:34:54.618027Z",
"url": "https://files.pythonhosted.org/packages/4e/e8/1f149f3c169bf8996b2c36ffcc30cf6af2891deec6f6679d63ed212aef35/fbgemm_gpu_nightly_cpu-2024.12.18-cp310-cp310-manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "23963d320532f0f8f695fe54e04c5174610d1dc05c45e07623f01ffb44481064",
"md5": "f4fd336cfcf338d373090a5853d19e94",
"sha256": "d8d6bc2d755dab05806a26a32ed5ac958534d334b1799bc9e8ad2fd3c760303d"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2024.12.18-cp310-cp310-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f4fd336cfcf338d373090a5853d19e94",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 3828416,
"upload_time": "2024-12-18T13:27:19",
"upload_time_iso_8601": "2024-12-18T13:27:19.683662Z",
"url": "https://files.pythonhosted.org/packages/23/96/3d320532f0f8f695fe54e04c5174610d1dc05c45e07623f01ffb44481064/fbgemm_gpu_nightly_cpu-2024.12.18-cp310-cp310-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6c2f98520ccc207f04e7c8c2d8e241ec8f9d91093a22aa2d03c1dd0a2f457470",
"md5": "f28b6a83733c53ab74876689abd74979",
"sha256": "359400c64887ef463cbaceca783d60410716d114a9e4b3891fa96bad25a8f372"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2024.12.18-cp311-cp311-manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "f28b6a83733c53ab74876689abd74979",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 2693320,
"upload_time": "2024-12-18T13:34:36",
"upload_time_iso_8601": "2024-12-18T13:34:36.675743Z",
"url": "https://files.pythonhosted.org/packages/6c/2f/98520ccc207f04e7c8c2d8e241ec8f9d91093a22aa2d03c1dd0a2f457470/fbgemm_gpu_nightly_cpu-2024.12.18-cp311-cp311-manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0d925fe765e93a36867456294103bdb977f650c7e8f2f3c15b29f89bd453e013",
"md5": "23f8fbd0fd52f1afccafa74f416b0593",
"sha256": "24eb644f7ebc3154ca8c56fe94a4749c9534d7c23815a9102dc9d88caffe11d9"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2024.12.18-cp311-cp311-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "23f8fbd0fd52f1afccafa74f416b0593",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 3828423,
"upload_time": "2024-12-18T13:26:48",
"upload_time_iso_8601": "2024-12-18T13:26:48.394229Z",
"url": "https://files.pythonhosted.org/packages/0d/92/5fe765e93a36867456294103bdb977f650c7e8f2f3c15b29f89bd453e013/fbgemm_gpu_nightly_cpu-2024.12.18-cp311-cp311-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b8f94f9b612c298dfc13a2cd5f160323f44d18cf5428bc8ebc339ec9019ea6ce",
"md5": "d986f51be3b8cdbbaa72eca99d5659e1",
"sha256": "ea5b4eec4b88af379d4bec1a8a729dc5302b901360b53d3f0707fa806afd92f3"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2024.12.18-cp312-cp312-manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "d986f51be3b8cdbbaa72eca99d5659e1",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 2693323,
"upload_time": "2024-12-18T13:33:50",
"upload_time_iso_8601": "2024-12-18T13:33:50.972772Z",
"url": "https://files.pythonhosted.org/packages/b8/f9/4f9b612c298dfc13a2cd5f160323f44d18cf5428bc8ebc339ec9019ea6ce/fbgemm_gpu_nightly_cpu-2024.12.18-cp312-cp312-manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1ab2d8bc03ff16ceb07e44bcb9992370dd339389a9bfe0f88068131897ed8639",
"md5": "0f8980288de194fd8f6423b2f5ec01cb",
"sha256": "94db2d20202543f4fea5df7a50d7ece609538294cb6d448756878989e91497b8"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2024.12.18-cp312-cp312-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "0f8980288de194fd8f6423b2f5ec01cb",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 3828428,
"upload_time": "2024-12-18T13:25:38",
"upload_time_iso_8601": "2024-12-18T13:25:38.787613Z",
"url": "https://files.pythonhosted.org/packages/1a/b2/d8bc03ff16ceb07e44bcb9992370dd339389a9bfe0f88068131897ed8639/fbgemm_gpu_nightly_cpu-2024.12.18-cp312-cp312-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d0f7545caff6e5626edb24f093808d3e993ed0b66174055bff81153484b3f4d9",
"md5": "8bf738e8f5c1a565d3e6addb7eaa4018",
"sha256": "75d983daa67a9a2407cd463579a9aa12a097627fee2f55f5401514a15953a094"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2024.12.18-cp39-cp39-manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "8bf738e8f5c1a565d3e6addb7eaa4018",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 2693235,
"upload_time": "2024-12-18T13:34:56",
"upload_time_iso_8601": "2024-12-18T13:34:56.233587Z",
"url": "https://files.pythonhosted.org/packages/d0/f7/545caff6e5626edb24f093808d3e993ed0b66174055bff81153484b3f4d9/fbgemm_gpu_nightly_cpu-2024.12.18-cp39-cp39-manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6979f6fcf2c667f22d11bcbcf1688e83f3f25cdb26d40ac2a9640eb799348c38",
"md5": "c0d953fbb9aa20e19da4aabde33944ec",
"sha256": "68eb615159f89fcfe0ed99ec76db694fefa84832e998986eaea50429568162ef"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_cpu-2024.12.18-cp39-cp39-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "c0d953fbb9aa20e19da4aabde33944ec",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 3828400,
"upload_time": "2024-12-18T13:26:55",
"upload_time_iso_8601": "2024-12-18T13:26:55.565606Z",
"url": "https://files.pythonhosted.org/packages/69/79/f6fcf2c667f22d11bcbcf1688e83f3f25cdb26d40ac2a9640eb799348c38/fbgemm_gpu_nightly_cpu-2024.12.18-cp39-cp39-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-18 13:34:54",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly-cpu"
}