fbgemm-gpu-nightly-cpu


Namefbgemm-gpu-nightly-cpu JSON
Version 2024.11.16 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2024-11-16 13:32:34
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly-cpu",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2024.11.16",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "97663ff6fd454fb30327a416c1d9f8e70a9d51b02f4da95f97153d8bc4dac78d",
                "md5": "fd2faeab5f05e120828bdeeea3f82680",
                "sha256": "4ae66c643b6eef5291370f3bfdf338d0b1c0b9f403673d9a398069f22667f78e"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2024.11.16-cp310-cp310-manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "fd2faeab5f05e120828bdeeea3f82680",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 3132906,
            "upload_time": "2024-11-16T13:32:34",
            "upload_time_iso_8601": "2024-11-16T13:32:34.496030Z",
            "url": "https://files.pythonhosted.org/packages/97/66/3ff6fd454fb30327a416c1d9f8e70a9d51b02f4da95f97153d8bc4dac78d/fbgemm_gpu_nightly_cpu-2024.11.16-cp310-cp310-manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7cb230ff891c797061191fcda67afa24fabf4d4c3f116040298b30ae3c7f2601",
                "md5": "7d93b9636966ff259db6dbdcd80e3481",
                "sha256": "6128ee173b38dedb18194fdbbfa5c8e5d7a9e7bc1d59a79f52654ea039eb7de1"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2024.11.16-cp310-cp310-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7d93b9636966ff259db6dbdcd80e3481",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 4283105,
            "upload_time": "2024-11-16T13:23:46",
            "upload_time_iso_8601": "2024-11-16T13:23:46.121146Z",
            "url": "https://files.pythonhosted.org/packages/7c/b2/30ff891c797061191fcda67afa24fabf4d4c3f116040298b30ae3c7f2601/fbgemm_gpu_nightly_cpu-2024.11.16-cp310-cp310-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aa8f21a7c8044cd7d6c70b6cfc55aa8e95572246c4d59af943d20188a3d26530",
                "md5": "8b9a607aee8e0b488bdc1b0ea65827cb",
                "sha256": "4ba570051f2da61f2193c90bebb024ba1d54d832fef0a64563d9012233fcfc39"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2024.11.16-cp311-cp311-manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "8b9a607aee8e0b488bdc1b0ea65827cb",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 3132912,
            "upload_time": "2024-11-16T13:32:19",
            "upload_time_iso_8601": "2024-11-16T13:32:19.859168Z",
            "url": "https://files.pythonhosted.org/packages/aa/8f/21a7c8044cd7d6c70b6cfc55aa8e95572246c4d59af943d20188a3d26530/fbgemm_gpu_nightly_cpu-2024.11.16-cp311-cp311-manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2783b963b4a13228d4b44e3831c8562bfad4df6dbd313ff3421c330dfeaa755f",
                "md5": "3720348d4c0b2baec2ca6e26045c7e20",
                "sha256": "7534be8dcb7fa446f1f4d1ad8492483fe4a1956c95183cbefba62192979d5541"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2024.11.16-cp311-cp311-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "3720348d4c0b2baec2ca6e26045c7e20",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 4283113,
            "upload_time": "2024-11-16T13:23:27",
            "upload_time_iso_8601": "2024-11-16T13:23:27.304674Z",
            "url": "https://files.pythonhosted.org/packages/27/83/b963b4a13228d4b44e3831c8562bfad4df6dbd313ff3421c330dfeaa755f/fbgemm_gpu_nightly_cpu-2024.11.16-cp311-cp311-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8bfe59a49f41c8c9c1a04e4ed8366a5ce07c3d847cf77fe61f11359256278788",
                "md5": "c4d71823a6a416d62179dfd90b16f656",
                "sha256": "fb69edd7efa61e59b5749789d34766b89fdab52f7c8aa48355b7c16a07f87e06"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2024.11.16-cp312-cp312-manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "c4d71823a6a416d62179dfd90b16f656",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 3132912,
            "upload_time": "2024-11-16T13:32:03",
            "upload_time_iso_8601": "2024-11-16T13:32:03.213871Z",
            "url": "https://files.pythonhosted.org/packages/8b/fe/59a49f41c8c9c1a04e4ed8366a5ce07c3d847cf77fe61f11359256278788/fbgemm_gpu_nightly_cpu-2024.11.16-cp312-cp312-manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dfbafcca55bd265f35aadb7166c9124a81b5fe8c57160ec2409521f4f618c238",
                "md5": "a349df92a60d98c184221d4420c5c04f",
                "sha256": "17cd412ae6cd719fb3a840b0561e9091abfdb7f5b4db2e1b250dc96113ebe61a"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2024.11.16-cp312-cp312-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a349df92a60d98c184221d4420c5c04f",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 4283107,
            "upload_time": "2024-11-16T13:23:39",
            "upload_time_iso_8601": "2024-11-16T13:23:39.620202Z",
            "url": "https://files.pythonhosted.org/packages/df/ba/fcca55bd265f35aadb7166c9124a81b5fe8c57160ec2409521f4f618c238/fbgemm_gpu_nightly_cpu-2024.11.16-cp312-cp312-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fca9aab309cb3f793ca6856af65cf49dec9834b8310267dc495a743f1a0bb3fb",
                "md5": "09b26c34f081eda9c0462e24b78ac5fb",
                "sha256": "e8e1269e9db3b6140a5c53a0dd98bfd8bfe068f445326d03f02ba2590c10ebbd"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2024.11.16-cp39-cp39-manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "09b26c34f081eda9c0462e24b78ac5fb",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 3132937,
            "upload_time": "2024-11-16T13:31:52",
            "upload_time_iso_8601": "2024-11-16T13:31:52.923378Z",
            "url": "https://files.pythonhosted.org/packages/fc/a9/aab309cb3f793ca6856af65cf49dec9834b8310267dc495a743f1a0bb3fb/fbgemm_gpu_nightly_cpu-2024.11.16-cp39-cp39-manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "24da7fbdcf379033e840f72eae53f40cecbdc6e6813ef72d21b7ea608e9ce4a9",
                "md5": "e3661c59607cf4ce5fca218286a57d9d",
                "sha256": "6a84368f86d1231cb606dae2efa9c47d38146b53836a658b712aa20ffdba4167"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2024.11.16-cp39-cp39-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "e3661c59607cf4ce5fca218286a57d9d",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 4283103,
            "upload_time": "2024-11-16T13:23:48",
            "upload_time_iso_8601": "2024-11-16T13:23:48.826751Z",
            "url": "https://files.pythonhosted.org/packages/24/da/7fbdcf379033e840f72eae53f40cecbdc6e6813ef72d21b7ea608e9ce4a9/fbgemm_gpu_nightly_cpu-2024.11.16-cp39-cp39-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-16 13:32:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly-cpu"
}
        
Elapsed time: 0.97850s