fbgemm-gpu-nightly-cpu


Namefbgemm-gpu-nightly-cpu JSON
Version 2025.2.22 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-02-22 13:38:42
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly-cpu",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.2.22",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fec9b5f83fdf7b02650be6efdf5843d4119ac47e6108aae9a12198ae3aac2bbf",
                "md5": "7828ffccd5128d35ad0dfe864b4a640c",
                "sha256": "ee6d741bb715502edd08f3251fb1ed02a8d7bca4f39e08646476c50ad1a20cf0"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp310-cp310-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "7828ffccd5128d35ad0dfe864b4a640c",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 3947037,
            "upload_time": "2025-02-22T13:38:42",
            "upload_time_iso_8601": "2025-02-22T13:38:42.391261Z",
            "url": "https://files.pythonhosted.org/packages/fe/c9/b5f83fdf7b02650be6efdf5843d4119ac47e6108aae9a12198ae3aac2bbf/fbgemm_gpu_nightly_cpu-2025.2.22-cp310-cp310-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f81a31e70aa9d1f5dd4de01158173c09b14262d6f47c928c77852fa4a8d6fabd",
                "md5": "cfce44cce08b349884f8e9e627c3e189",
                "sha256": "6c5a209103ae570f2ee3400e5164b15179bf2ae17227bae1ec4a0654fdc24ceb"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "cfce44cce08b349884f8e9e627c3e189",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 5099609,
            "upload_time": "2025-02-22T13:29:48",
            "upload_time_iso_8601": "2025-02-22T13:29:48.971053Z",
            "url": "https://files.pythonhosted.org/packages/f8/1a/31e70aa9d1f5dd4de01158173c09b14262d6f47c928c77852fa4a8d6fabd/fbgemm_gpu_nightly_cpu-2025.2.22-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2dc77c05b6ddfcfbe61bb178f2e9e957e6c7d69a3905b133a6d89cba266217ee",
                "md5": "5c2bba7d8c8e630dd65466564aee3acd",
                "sha256": "a1c1337793984b39897f076a7f602f4cf644ba89e7f16aaed663c20be24aa883"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp311-cp311-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "5c2bba7d8c8e630dd65466564aee3acd",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 3947054,
            "upload_time": "2025-02-22T13:37:56",
            "upload_time_iso_8601": "2025-02-22T13:37:56.888458Z",
            "url": "https://files.pythonhosted.org/packages/2d/c7/7c05b6ddfcfbe61bb178f2e9e957e6c7d69a3905b133a6d89cba266217ee/fbgemm_gpu_nightly_cpu-2025.2.22-cp311-cp311-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3618a6af0d73093632d26fa2b2784b99c21f606f18c3b61fd0076596e99034a8",
                "md5": "d21a4271a835f7ad2ff1323de1d4716e",
                "sha256": "8bad618b112aee51e306d9ef129f420b332e76a225f04103d9cbc1f88ef4b489"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "d21a4271a835f7ad2ff1323de1d4716e",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 5099624,
            "upload_time": "2025-02-22T13:28:28",
            "upload_time_iso_8601": "2025-02-22T13:28:28.576279Z",
            "url": "https://files.pythonhosted.org/packages/36/18/a6af0d73093632d26fa2b2784b99c21f606f18c3b61fd0076596e99034a8/fbgemm_gpu_nightly_cpu-2025.2.22-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d45a01f9d52aaed95adeac9a024acffffc296cd44e34c4d23e01bbd70255b482",
                "md5": "6595ea585c6e6d511070bfaf45bb8899",
                "sha256": "0f32ba6e26e2ffc177ae9ec16aa88ca19c8925494a8c4615799b2e3b850e25c5"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp312-cp312-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "6595ea585c6e6d511070bfaf45bb8899",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 3947057,
            "upload_time": "2025-02-22T13:39:14",
            "upload_time_iso_8601": "2025-02-22T13:39:14.978428Z",
            "url": "https://files.pythonhosted.org/packages/d4/5a/01f9d52aaed95adeac9a024acffffc296cd44e34c4d23e01bbd70255b482/fbgemm_gpu_nightly_cpu-2025.2.22-cp312-cp312-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f84a272f19b6f5d89d60482193ced8ad3766920356bc67f56cb90773c3a7711f",
                "md5": "495402aea53649d866464229d92f1af6",
                "sha256": "62d441fecff95bce7af84ab9e3c16abcca99d5745f9dc5bcb34cab1c13b34864"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "495402aea53649d866464229d92f1af6",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 5099631,
            "upload_time": "2025-02-22T13:28:34",
            "upload_time_iso_8601": "2025-02-22T13:28:34.558098Z",
            "url": "https://files.pythonhosted.org/packages/f8/4a/272f19b6f5d89d60482193ced8ad3766920356bc67f56cb90773c3a7711f/fbgemm_gpu_nightly_cpu-2025.2.22-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2c9c800d6decce6bb2b99477ece8ab3cb7a6bcf6ea530ebffa7411be1726cd2e",
                "md5": "e42136962ace23598efb462fd1df9717",
                "sha256": "ad3c7956bbc7f3facb1ad1b967d479e519a78313f97b80d6170bb103c1bfbbb9"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp313-cp313-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "e42136962ace23598efb462fd1df9717",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 3947053,
            "upload_time": "2025-02-22T13:35:50",
            "upload_time_iso_8601": "2025-02-22T13:35:50.790876Z",
            "url": "https://files.pythonhosted.org/packages/2c/9c/800d6decce6bb2b99477ece8ab3cb7a6bcf6ea530ebffa7411be1726cd2e/fbgemm_gpu_nightly_cpu-2025.2.22-cp313-cp313-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "53183aea730f6c00cf4efcdcd2f72d66141a6370ddda609992434b515401a25c",
                "md5": "49b36709e5c72a14a4c1b27a3c580aaf",
                "sha256": "e2251c79a7cff404af4db645849b8df2f74520c6a6a6217019551220673e4aa6"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "49b36709e5c72a14a4c1b27a3c580aaf",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 5099626,
            "upload_time": "2025-02-22T13:28:33",
            "upload_time_iso_8601": "2025-02-22T13:28:33.903431Z",
            "url": "https://files.pythonhosted.org/packages/53/18/3aea730f6c00cf4efcdcd2f72d66141a6370ddda609992434b515401a25c/fbgemm_gpu_nightly_cpu-2025.2.22-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "556c4d12c880d578d0f983bd179ac0a8efecd93910103a0affecc07307f44673",
                "md5": "13ca9cbf4b972721e35993898c554b05",
                "sha256": "173d507b17cc2a11b72744dbc6205f1a9a2adade3f2550179d99c93df969d9e9"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp39-cp39-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "13ca9cbf4b972721e35993898c554b05",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 3946926,
            "upload_time": "2025-02-22T13:38:42",
            "upload_time_iso_8601": "2025-02-22T13:38:42.364421Z",
            "url": "https://files.pythonhosted.org/packages/55/6c/4d12c880d578d0f983bd179ac0a8efecd93910103a0affecc07307f44673/fbgemm_gpu_nightly_cpu-2025.2.22-cp39-cp39-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "cc810713a395f75f3b51c9e9fee1e287e6f290d8b53205b49ebac31923edc4e7",
                "md5": "83140af7313ddfeb51438cc17c13f852",
                "sha256": "be63c64f45c1b480332cf769df21f0eac48ca854484d55ed68eeda4acec458d3"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_cpu-2025.2.22-cp39-cp39-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "83140af7313ddfeb51438cc17c13f852",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 5099689,
            "upload_time": "2025-02-22T13:28:49",
            "upload_time_iso_8601": "2025-02-22T13:28:49.459580Z",
            "url": "https://files.pythonhosted.org/packages/cc/81/0713a395f75f3b51c9e9fee1e287e6f290d8b53205b49ebac31923edc4e7/fbgemm_gpu_nightly_cpu-2025.2.22-cp39-cp39-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-22 13:38:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly-cpu"
}
        
Elapsed time: 0.45955s