# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-genai-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.11.1",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "1231deb796875e5b9bbb8c712306891f13a7b63e6d36c886ec99e1efb6d234ff",
"md5": "3371a2457bb34ef0dfb7bd0dbc796d24",
"sha256": "097d5baf7de9fb98b9839324359b100c168f1744ac0b978782a8a4581698c8ea"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai_nightly-2025.11.1-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "3371a2457bb34ef0dfb7bd0dbc796d24",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 16623423,
"upload_time": "2025-11-01T14:13:35",
"upload_time_iso_8601": "2025-11-01T14:13:35.351072Z",
"url": "https://files.pythonhosted.org/packages/12/31/deb796875e5b9bbb8c712306891f13a7b63e6d36c886ec99e1efb6d234ff/fbgemm_gpu_genai_nightly-2025.11.1-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ab79dfa1a84a8e9ed71b9972569661ae93ac7dfc99b72131d513e4a5d550b40a",
"md5": "66f61256b79db0000f077940030ca235",
"sha256": "82b47188c4b1441885cd87aa74f08adc2f44438610611493b473ab3d248a5e54"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai_nightly-2025.11.1-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "66f61256b79db0000f077940030ca235",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 17074501,
"upload_time": "2025-11-01T14:13:12",
"upload_time_iso_8601": "2025-11-01T14:13:12.038679Z",
"url": "https://files.pythonhosted.org/packages/ab/79/dfa1a84a8e9ed71b9972569661ae93ac7dfc99b72131d513e4a5d550b40a/fbgemm_gpu_genai_nightly-2025.11.1-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ce99547c94696b6e9701660c3b266db8b30823f30126045f71d614320b26bd85",
"md5": "76736cf01c63ab008fe0047a29e9e2e1",
"sha256": "2e2bdc396bc3aed18ac4774a721eeb617ef40260414b5e185f999c1f3a90d0f5"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai_nightly-2025.11.1-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "76736cf01c63ab008fe0047a29e9e2e1",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 16623323,
"upload_time": "2025-11-01T14:13:25",
"upload_time_iso_8601": "2025-11-01T14:13:25.096655Z",
"url": "https://files.pythonhosted.org/packages/ce/99/547c94696b6e9701660c3b266db8b30823f30126045f71d614320b26bd85/fbgemm_gpu_genai_nightly-2025.11.1-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f7c6a10f6ae86c0b069731100a9818e2917f4e02dd43bee40b25a72e93940d5f",
"md5": "98fdcb5d67ef564f65b8aa3d92153a29",
"sha256": "d3b5b0cf10831c396b719e1a457eb8bd249fa93ac185c6a38311b164b34cf586"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai_nightly-2025.11.1-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "98fdcb5d67ef564f65b8aa3d92153a29",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 16623471,
"upload_time": "2025-11-01T14:13:18",
"upload_time_iso_8601": "2025-11-01T14:13:18.279621Z",
"url": "https://files.pythonhosted.org/packages/f7/c6/a10f6ae86c0b069731100a9818e2917f4e02dd43bee40b25a72e93940d5f/fbgemm_gpu_genai_nightly-2025.11.1-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-11-01 14:13:35",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-genai-nightly"
}