# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-genai-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.7.8",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "1bb61295675205aed07c6ac0e3a5d30ee810eb8725dba3afff1b8a9d175fed52",
"md5": "32affa1607e2fec37827c4c31ebfc57b",
"sha256": "79d05a43a18f01ab4316c6cbeb80f4cde695a5e14193165f4963959be4768758"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai_nightly-2025.7.8-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "32affa1607e2fec37827c4c31ebfc57b",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 13987740,
"upload_time": "2025-07-08T14:38:30",
"upload_time_iso_8601": "2025-07-08T14:38:30.805232Z",
"url": "https://files.pythonhosted.org/packages/1b/b6/1295675205aed07c6ac0e3a5d30ee810eb8725dba3afff1b8a9d175fed52/fbgemm_gpu_genai_nightly-2025.7.8-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "77adf1a2bf07694d61e802a743e16063f83e646532dbfd9848e9acf0f4ddb3e4",
"md5": "4a77de7482e6f355bb04ac4b01b8a840",
"sha256": "366d7ff8ab3800fd4945c61efa17485645f4f17cb2d0283447ff5266adf04c0e"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai_nightly-2025.7.8-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "4a77de7482e6f355bb04ac4b01b8a840",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 13987621,
"upload_time": "2025-07-08T14:41:52",
"upload_time_iso_8601": "2025-07-08T14:41:52.370621Z",
"url": "https://files.pythonhosted.org/packages/77/ad/f1a2bf07694d61e802a743e16063f83e646532dbfd9848e9acf0f4ddb3e4/fbgemm_gpu_genai_nightly-2025.7.8-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c0ef2a8e620f87841eb64e63e9f6b124d7d59232ce3d7c36deb8cbcc1411d30e",
"md5": "a7b085eed9c53e864129b13fb02cf1c2",
"sha256": "1266dc7e7331ad7dbadf15614a392309cd1d4547c951c114fe374d94f1bd2c22"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai_nightly-2025.7.8-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "a7b085eed9c53e864129b13fb02cf1c2",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 13987698,
"upload_time": "2025-07-08T14:42:39",
"upload_time_iso_8601": "2025-07-08T14:42:39.162886Z",
"url": "https://files.pythonhosted.org/packages/c0/ef/2a8e620f87841eb64e63e9f6b124d7d59232ce3d7c36deb8cbcc1411d30e/fbgemm_gpu_genai_nightly-2025.7.8-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d74477f53c7df52eabce622e94ce48e6b620526878ab4c9079037cddddbf5d88",
"md5": "8829007cfdc7ab14bdd7a90a73e5dc21",
"sha256": "cf2af2189028158aed28f1c43076ef75611ea789c46b2bfb1666193a1f1a251e"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai_nightly-2025.7.8-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "8829007cfdc7ab14bdd7a90a73e5dc21",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 13987610,
"upload_time": "2025-07-08T14:42:45",
"upload_time_iso_8601": "2025-07-08T14:42:45.844982Z",
"url": "https://files.pythonhosted.org/packages/d7/44/77f53c7df52eabce622e94ce48e6b620526878ab4c9079037cddddbf5d88/fbgemm_gpu_genai_nightly-2025.7.8-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "89140dd268a6e12111c1fd730d0e3ce897b45c3ef0fcfec65556fb6536cc9364",
"md5": "c0a2a8e68071d668eaf1222cdb1b4cf6",
"sha256": "b70dcc13f0261d43db299418247f47909ee8925c80cdcb27d87b5b56117d9768"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai_nightly-2025.7.8-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "c0a2a8e68071d668eaf1222cdb1b4cf6",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 13938341,
"upload_time": "2025-07-08T14:42:11",
"upload_time_iso_8601": "2025-07-08T14:42:11.035151Z",
"url": "https://files.pythonhosted.org/packages/89/14/0dd268a6e12111c1fd730d0e3ce897b45c3ef0fcfec65556fb6536cc9364/fbgemm_gpu_genai_nightly-2025.7.8-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-08 14:38:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-genai-nightly"
}