fbgemm-gpu-genai-nightly


Namefbgemm-gpu-genai-nightly JSON
Version 2025.11.1 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-11-01 14:13:35
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-genai-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.11.1",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1231deb796875e5b9bbb8c712306891f13a7b63e6d36c886ec99e1efb6d234ff",
                "md5": "3371a2457bb34ef0dfb7bd0dbc796d24",
                "sha256": "097d5baf7de9fb98b9839324359b100c168f1744ac0b978782a8a4581698c8ea"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai_nightly-2025.11.1-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "3371a2457bb34ef0dfb7bd0dbc796d24",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 16623423,
            "upload_time": "2025-11-01T14:13:35",
            "upload_time_iso_8601": "2025-11-01T14:13:35.351072Z",
            "url": "https://files.pythonhosted.org/packages/12/31/deb796875e5b9bbb8c712306891f13a7b63e6d36c886ec99e1efb6d234ff/fbgemm_gpu_genai_nightly-2025.11.1-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ab79dfa1a84a8e9ed71b9972569661ae93ac7dfc99b72131d513e4a5d550b40a",
                "md5": "66f61256b79db0000f077940030ca235",
                "sha256": "82b47188c4b1441885cd87aa74f08adc2f44438610611493b473ab3d248a5e54"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai_nightly-2025.11.1-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "66f61256b79db0000f077940030ca235",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 17074501,
            "upload_time": "2025-11-01T14:13:12",
            "upload_time_iso_8601": "2025-11-01T14:13:12.038679Z",
            "url": "https://files.pythonhosted.org/packages/ab/79/dfa1a84a8e9ed71b9972569661ae93ac7dfc99b72131d513e4a5d550b40a/fbgemm_gpu_genai_nightly-2025.11.1-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ce99547c94696b6e9701660c3b266db8b30823f30126045f71d614320b26bd85",
                "md5": "76736cf01c63ab008fe0047a29e9e2e1",
                "sha256": "2e2bdc396bc3aed18ac4774a721eeb617ef40260414b5e185f999c1f3a90d0f5"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai_nightly-2025.11.1-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "76736cf01c63ab008fe0047a29e9e2e1",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 16623323,
            "upload_time": "2025-11-01T14:13:25",
            "upload_time_iso_8601": "2025-11-01T14:13:25.096655Z",
            "url": "https://files.pythonhosted.org/packages/ce/99/547c94696b6e9701660c3b266db8b30823f30126045f71d614320b26bd85/fbgemm_gpu_genai_nightly-2025.11.1-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f7c6a10f6ae86c0b069731100a9818e2917f4e02dd43bee40b25a72e93940d5f",
                "md5": "98fdcb5d67ef564f65b8aa3d92153a29",
                "sha256": "d3b5b0cf10831c396b719e1a457eb8bd249fa93ac185c6a38311b164b34cf586"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai_nightly-2025.11.1-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "98fdcb5d67ef564f65b8aa3d92153a29",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 16623471,
            "upload_time": "2025-11-01T14:13:18",
            "upload_time_iso_8601": "2025-11-01T14:13:18.279621Z",
            "url": "https://files.pythonhosted.org/packages/f7/c6/a10f6ae86c0b069731100a9818e2917f4e02dd43bee40b25a72e93940d5f/fbgemm_gpu_genai_nightly-2025.11.1-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-11-01 14:13:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-genai-nightly"
}
        
Elapsed time: 1.38544s