fbgemm-gpu-genai-nightly


Namefbgemm-gpu-genai-nightly JSON
Version 2025.7.29 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-07-29 14:53:58
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-genai-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.7.29",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a2834477a1ed51409a4ae43f1d9bbd2f7f182a2ab3b3bc7b86010ce1f6fad353",
                "md5": "ca34bc84c33f9aaec11d903307e326e0",
                "sha256": "b0636690302738b56c5f5e129339fd09a544df5b678b8ea0c79b4d9d3554330b"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai_nightly-2025.7.29-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ca34bc84c33f9aaec11d903307e326e0",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 14209898,
            "upload_time": "2025-07-29T14:53:58",
            "upload_time_iso_8601": "2025-07-29T14:53:58.319877Z",
            "url": "https://files.pythonhosted.org/packages/a2/83/4477a1ed51409a4ae43f1d9bbd2f7f182a2ab3b3bc7b86010ce1f6fad353/fbgemm_gpu_genai_nightly-2025.7.29-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ac35fdd34194edc67225ff400e4f13393ee35caea380c35ce18fe9d4d384378b",
                "md5": "209d98157404f5e571385090e7e55d11",
                "sha256": "6662268d18dd02135bbffee62db30b3e9004cdd488533bead4153b1a24ab8469"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai_nightly-2025.7.29-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "209d98157404f5e571385090e7e55d11",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 14132747,
            "upload_time": "2025-07-29T14:53:54",
            "upload_time_iso_8601": "2025-07-29T14:53:54.584575Z",
            "url": "https://files.pythonhosted.org/packages/ac/35/fdd34194edc67225ff400e4f13393ee35caea380c35ce18fe9d4d384378b/fbgemm_gpu_genai_nightly-2025.7.29-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "20157636b3ffc3107ef7aa9c2fbc76c2c52b9efd17b4facd496900eca4df981a",
                "md5": "282931bad1f64b3d01f7d684d617a0ce",
                "sha256": "59bf65224f2db5a225afbf1c53fadfe3ab7234c060a9fcfaff15c8bffda3b7a4"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai_nightly-2025.7.29-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "282931bad1f64b3d01f7d684d617a0ce",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 14209534,
            "upload_time": "2025-07-29T14:53:54",
            "upload_time_iso_8601": "2025-07-29T14:53:54.297684Z",
            "url": "https://files.pythonhosted.org/packages/20/15/7636b3ffc3107ef7aa9c2fbc76c2c52b9efd17b4facd496900eca4df981a/fbgemm_gpu_genai_nightly-2025.7.29-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "93ebebccc2447543cd6bfb0a5d9989f39ab46df4f0edbe6d7074bdfbd34da342",
                "md5": "298c73fe5d43d0f07c4b211558605367",
                "sha256": "e926cc388d8681c6d1286e0309649d42f1724d0a7c991311753154cb1a7da153"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai_nightly-2025.7.29-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "298c73fe5d43d0f07c4b211558605367",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 14132580,
            "upload_time": "2025-07-29T14:53:22",
            "upload_time_iso_8601": "2025-07-29T14:53:22.387160Z",
            "url": "https://files.pythonhosted.org/packages/93/eb/ebccc2447543cd6bfb0a5d9989f39ab46df4f0edbe6d7074bdfbd34da342/fbgemm_gpu_genai_nightly-2025.7.29-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8a609bb32a8b43b1b89a11b86dc0356ceccf25f10123d5ec48d1a642fea4d01f",
                "md5": "6dff85623697436a465ab8e57e442ee1",
                "sha256": "55e6d7c88c61f0c44d21e503bc29aded8c0f5a628fa9f869306e9e6581e70fe1"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai_nightly-2025.7.29-cp39-cp39-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "6dff85623697436a465ab8e57e442ee1",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 14132558,
            "upload_time": "2025-07-29T14:53:16",
            "upload_time_iso_8601": "2025-07-29T14:53:16.217254Z",
            "url": "https://files.pythonhosted.org/packages/8a/60/9bb32a8b43b1b89a11b86dc0356ceccf25f10123d5ec48d1a642fea4d01f/fbgemm_gpu_genai_nightly-2025.7.29-cp39-cp39-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-29 14:53:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-genai-nightly"
}
        
Elapsed time: 0.84988s