fbgemm-gpu-nightly


Namefbgemm-gpu-nightly JSON
Version 2024.11.16 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2024-11-16 14:03:41
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2024.11.16",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f6087362405927a0d6dcd178085e974eb79858aa08baa7229986abb652e94f28",
                "md5": "cbc5739ea7f19ff46f1a5d92133e5929",
                "sha256": "018468dec00bb17f97d4bb6a0266fa40f8fb1e7303a662e3b85af4e844bb8e88"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.11.16-cp310-cp310-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "cbc5739ea7f19ff46f1a5d92133e5929",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 403264796,
            "upload_time": "2024-11-16T14:03:41",
            "upload_time_iso_8601": "2024-11-16T14:03:41.442076Z",
            "url": "https://files.pythonhosted.org/packages/f6/08/7362405927a0d6dcd178085e974eb79858aa08baa7229986abb652e94f28/fbgemm_gpu_nightly-2024.11.16-cp310-cp310-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5ea6aa532eb5c7e1220a668aa0118e89ed8ea0fc490c14a899ebe91b60c706a0",
                "md5": "ccbbb5e554fb86e0c29ac652ef3dfb35",
                "sha256": "8f6fef1f30b2e676950473e0a04618b7c24ffabe0191393befcc231413a0fd41"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.11.16-cp311-cp311-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ccbbb5e554fb86e0c29ac652ef3dfb35",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 403263214,
            "upload_time": "2024-11-16T14:02:59",
            "upload_time_iso_8601": "2024-11-16T14:02:59.907099Z",
            "url": "https://files.pythonhosted.org/packages/5e/a6/aa532eb5c7e1220a668aa0118e89ed8ea0fc490c14a899ebe91b60c706a0/fbgemm_gpu_nightly-2024.11.16-cp311-cp311-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c153bfa3dd429f59ece00ed9b9511dc74eb2c664035efeefa8ba5c8d924eba97",
                "md5": "66fe0117141f9428a0b83b2346061d41",
                "sha256": "557d454bf9ab8c5970fad74a862cc37e592f1267a6561cc337d02d3c4476c169"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.11.16-cp312-cp312-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "66fe0117141f9428a0b83b2346061d41",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 397599067,
            "upload_time": "2024-11-16T14:01:50",
            "upload_time_iso_8601": "2024-11-16T14:01:50.641091Z",
            "url": "https://files.pythonhosted.org/packages/c1/53/bfa3dd429f59ece00ed9b9511dc74eb2c664035efeefa8ba5c8d924eba97/fbgemm_gpu_nightly-2024.11.16-cp312-cp312-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a5a9648031920c829dca912ffae519ecdfaac7816204ef89e8a047dab302c8e0",
                "md5": "7dcad0857f8f7ddc40abc5c8010038f1",
                "sha256": "068dafd77b893082539e1754c2c5ecfe182b41d4c7e34e5a3c9f0fb0de0a154d"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.11.16-cp39-cp39-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7dcad0857f8f7ddc40abc5c8010038f1",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 397598767,
            "upload_time": "2024-11-16T14:03:44",
            "upload_time_iso_8601": "2024-11-16T14:03:44.932910Z",
            "url": "https://files.pythonhosted.org/packages/a5/a9/648031920c829dca912ffae519ecdfaac7816204ef89e8a047dab302c8e0/fbgemm_gpu_nightly-2024.11.16-cp39-cp39-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-16 14:03:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly"
}
        
Elapsed time: 0.46448s