# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.2.15",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "e046b61688c7e3a82a2a34e45cb31394af30cbe2e4bf67fbfe08677b353241d2",
"md5": "1aef624386bd4bf42b7f723fb5e36739",
"sha256": "c1e961db25eeba7525f8ae17b31cd34ff827e49f40387b0b355451c3bf461b66"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.2.15-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "1aef624386bd4bf42b7f723fb5e36739",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 484212397,
"upload_time": "2025-02-15T14:15:09",
"upload_time_iso_8601": "2025-02-15T14:15:09.815557Z",
"url": "https://files.pythonhosted.org/packages/e0/46/b61688c7e3a82a2a34e45cb31394af30cbe2e4bf67fbfe08677b353241d2/fbgemm_gpu_nightly-2025.2.15-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5d2b18ae7d8165c79c942d030a229c0d9cedc8af645bd4ff085a37c47dbcfcf8",
"md5": "b4df064c2dce95bfbbf505f3ce6ee465",
"sha256": "506e8db2ee334b8e9b076e18dc6d685fce8d7a8384bbb8b11c4c87ed2232f25a"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.2.15-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "b4df064c2dce95bfbbf505f3ce6ee465",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 484213039,
"upload_time": "2025-02-15T14:14:57",
"upload_time_iso_8601": "2025-02-15T14:14:57.572711Z",
"url": "https://files.pythonhosted.org/packages/5d/2b/18ae7d8165c79c942d030a229c0d9cedc8af645bd4ff085a37c47dbcfcf8/fbgemm_gpu_nightly-2025.2.15-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7a6054063be0bbd44d0d6c853a315545aacbb634969ef543607cdcbf2cd55aa4",
"md5": "58244ac47fd92712e58b31683ffe0b56",
"sha256": "d34750a785166cb69683521710fdd70561f10ac09d41254172116b551e1dc417"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.2.15-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "58244ac47fd92712e58b31683ffe0b56",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 487480349,
"upload_time": "2025-02-15T14:13:30",
"upload_time_iso_8601": "2025-02-15T14:13:30.221122Z",
"url": "https://files.pythonhosted.org/packages/7a/60/54063be0bbd44d0d6c853a315545aacbb634969ef543607cdcbf2cd55aa4/fbgemm_gpu_nightly-2025.2.15-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "51d7b861a254c262457286663af7bac707c0894425b32ee97330f2ee5d8db65a",
"md5": "db144d650771daba751cafdf7f5ce658",
"sha256": "5dd1a4efcfe3ebd830bda6eab3097a5c945c95c9491b4ef454605421a979a115"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.2.15-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "db144d650771daba751cafdf7f5ce658",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 487478461,
"upload_time": "2025-02-15T14:12:28",
"upload_time_iso_8601": "2025-02-15T14:12:28.396081Z",
"url": "https://files.pythonhosted.org/packages/51/d7/b861a254c262457286663af7bac707c0894425b32ee97330f2ee5d8db65a/fbgemm_gpu_nightly-2025.2.15-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "92fa9494a4e3da3bd28ff4e361e589b31bc76edf7994893f04bc03308e50f445",
"md5": "bdf5bb1e6f97384ffa4794e4384ab0ed",
"sha256": "69f617e438ede25539e61bfce2750d5173eb9af2e3dabc2bbe44a0357debe13f"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.2.15-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "bdf5bb1e6f97384ffa4794e4384ab0ed",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 487479809,
"upload_time": "2025-02-15T14:16:23",
"upload_time_iso_8601": "2025-02-15T14:16:23.724639Z",
"url": "https://files.pythonhosted.org/packages/92/fa/9494a4e3da3bd28ff4e361e589b31bc76edf7994893f04bc03308e50f445/fbgemm_gpu_nightly-2025.2.15-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-15 14:15:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly"
}