fbgemm-gpu-nightly


Namefbgemm-gpu-nightly JSON
Version 2025.1.21 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-01-21 14:12:57
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.1.21",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "854fb098c4b8d9628cc4d0484e7d886f614a818bcd9510984e1553791e26699f",
                "md5": "4e3a6dca583ae769649ede8cdfedfbc3",
                "sha256": "f8f9f6803297b3acb4662f7bf0568d904f029d5341f33c3c053124e2d93d3ca1"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.1.21-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "4e3a6dca583ae769649ede8cdfedfbc3",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 460874281,
            "upload_time": "2025-01-21T14:12:57",
            "upload_time_iso_8601": "2025-01-21T14:12:57.227101Z",
            "url": "https://files.pythonhosted.org/packages/85/4f/b098c4b8d9628cc4d0484e7d886f614a818bcd9510984e1553791e26699f/fbgemm_gpu_nightly-2025.1.21-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2cb191081ca68e53b5bda695234199a4318be480c69d48dfa37a3f9d3a94b3f0",
                "md5": "ce6f629c0d202502395b7885e7d1ee4e",
                "sha256": "25a8ef44195e2d7e1014c1c7a95d1ef68677e8c832e5caa4a05d1dc60d0e3e5a"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.1.21-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ce6f629c0d202502395b7885e7d1ee4e",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 460874016,
            "upload_time": "2025-01-21T14:11:54",
            "upload_time_iso_8601": "2025-01-21T14:11:54.025875Z",
            "url": "https://files.pythonhosted.org/packages/2c/b1/91081ca68e53b5bda695234199a4318be480c69d48dfa37a3f9d3a94b3f0/fbgemm_gpu_nightly-2025.1.21-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e446768364c6ac652b71b46b47a3f70b3156401974c8152ffcbb418e3fa8ac03",
                "md5": "0987506043027fd7f5104b2615e0bc9d",
                "sha256": "b66982214a83772c242f0bf8169cc561b0fecf04e98a2d9f72b259c35b0c2e91"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.1.21-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0987506043027fd7f5104b2615e0bc9d",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 460873315,
            "upload_time": "2025-01-21T14:10:18",
            "upload_time_iso_8601": "2025-01-21T14:10:18.802416Z",
            "url": "https://files.pythonhosted.org/packages/e4/46/768364c6ac652b71b46b47a3f70b3156401974c8152ffcbb418e3fa8ac03/fbgemm_gpu_nightly-2025.1.21-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "15d0277bf2d9d7f5cca4354ee57724cc076ce706233dcef96a7986e11ea949dc",
                "md5": "a036cc740952f54759beefc640ef21b4",
                "sha256": "c0b52e6bdccb7b9e978fd3054c917f00845555dcf11be559808ba2e9c1c2baf6"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.1.21-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a036cc740952f54759beefc640ef21b4",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 463955608,
            "upload_time": "2025-01-21T14:11:01",
            "upload_time_iso_8601": "2025-01-21T14:11:01.322249Z",
            "url": "https://files.pythonhosted.org/packages/15/d0/277bf2d9d7f5cca4354ee57724cc076ce706233dcef96a7986e11ea949dc/fbgemm_gpu_nightly-2025.1.21-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a8f24e4f9d213b4da10837002ab6a4ab2b134e290a340a45882893655d3f5f94",
                "md5": "1e5f6c46af3f7c881e769406333d5887",
                "sha256": "f1111e1630669f2953f790ea5f725724a4f6af84f4ca95ca456a77fef910e213"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.1.21-cp39-cp39-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "1e5f6c46af3f7c881e769406333d5887",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 460871481,
            "upload_time": "2025-01-21T14:13:38",
            "upload_time_iso_8601": "2025-01-21T14:13:38.222570Z",
            "url": "https://files.pythonhosted.org/packages/a8/f2/4e4f9d213b4da10837002ab6a4ab2b134e290a340a45882893655d3f5f94/fbgemm_gpu_nightly-2025.1.21-cp39-cp39-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-21 14:12:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly"
}
        
Elapsed time: 0.48869s