# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.7.28",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "b07e6876cfcef88f2fa93a96ab1b858697250fd3a7c17af74c65717a445d9eb5",
"md5": "2c5e5d89636de191056a0e29115834fb",
"sha256": "06f1e1f139c4ad988eb7a1053f4e1a9634e16c57b6f455db9f197156a4f6e831"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.28-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "2c5e5d89636de191056a0e29115834fb",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 408600276,
"upload_time": "2025-07-28T15:24:19",
"upload_time_iso_8601": "2025-07-28T15:24:19.445586Z",
"url": "https://files.pythonhosted.org/packages/b0/7e/6876cfcef88f2fa93a96ab1b858697250fd3a7c17af74c65717a445d9eb5/fbgemm_gpu_nightly-2025.7.28-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7d94cb0770582c8ed6a85183facd1e4a634509258dd3e6eab34e1f7ba94185b9",
"md5": "8a8f67e072b65ddf7996c70c43ead3a8",
"sha256": "f7a049b339f8220184c1c5581b4628e38a03628eb8d9ae53df2e32c2d5c75e88"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.28-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "8a8f67e072b65ddf7996c70c43ead3a8",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 403506939,
"upload_time": "2025-07-28T15:23:56",
"upload_time_iso_8601": "2025-07-28T15:23:56.262197Z",
"url": "https://files.pythonhosted.org/packages/7d/94/cb0770582c8ed6a85183facd1e4a634509258dd3e6eab34e1f7ba94185b9/fbgemm_gpu_nightly-2025.7.28-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0822db5d63448c42ac2d52b90b61c3edb06e7c55f4505b11384cf53ba988f2e3",
"md5": "19f3a8c0a08e617008658327df38e955",
"sha256": "bf632a34d252708d250fe44450ccc3305997a360c4aac73e9b0fa6aa74ca029b"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.28-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "19f3a8c0a08e617008658327df38e955",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 408601131,
"upload_time": "2025-07-28T15:21:11",
"upload_time_iso_8601": "2025-07-28T15:21:11.655305Z",
"url": "https://files.pythonhosted.org/packages/08/22/db5d63448c42ac2d52b90b61c3edb06e7c55f4505b11384cf53ba988f2e3/fbgemm_gpu_nightly-2025.7.28-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a229cfdab3c67cf63e3dda40b74aafbff6078aed2cc3c3cbc0e095224236d594",
"md5": "7385e378aac327b574f69bb186a17d91",
"sha256": "3b5c6f0e5403d955332358f4490a77d06793e256d921ed2d2bf918aadabaa01d"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.28-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "7385e378aac327b574f69bb186a17d91",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 403507539,
"upload_time": "2025-07-28T15:20:46",
"upload_time_iso_8601": "2025-07-28T15:20:46.593963Z",
"url": "https://files.pythonhosted.org/packages/a2/29/cfdab3c67cf63e3dda40b74aafbff6078aed2cc3c3cbc0e095224236d594/fbgemm_gpu_nightly-2025.7.28-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a61afca4185d92333283af55b929b08f51e4c1d28cd82989409b89cd4f826997",
"md5": "7f70baa2852f980a4efbfcba8d4d69f3",
"sha256": "c06dbb8c9aed04b6e6f1ae39a4c2411925d949528e576ae2cd705c5c65346e9a"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.28-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "7f70baa2852f980a4efbfcba8d4d69f3",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 408600573,
"upload_time": "2025-07-28T15:24:08",
"upload_time_iso_8601": "2025-07-28T15:24:08.405753Z",
"url": "https://files.pythonhosted.org/packages/a6/1a/fca4185d92333283af55b929b08f51e4c1d28cd82989409b89cd4f826997/fbgemm_gpu_nightly-2025.7.28-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-28 15:24:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly"
}