fbgemm-gpu-nightly


Namefbgemm-gpu-nightly JSON
Version 2025.9.6 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-09-06 15:08:24
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.9.6",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f956557f7aaed88c5c58c0cf479f9bb7bfeb29353641d33700f5d427b3587b36",
                "md5": "b53d20517478f3188441f62384fac07b",
                "sha256": "0e8c8b0397c7653fa6052e2cd149088db348f694b162fc4cd90492af13729eb5"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.9.6-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "b53d20517478f3188441f62384fac07b",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 581021709,
            "upload_time": "2025-09-06T15:08:24",
            "upload_time_iso_8601": "2025-09-06T15:08:24.200213Z",
            "url": "https://files.pythonhosted.org/packages/f9/56/557f7aaed88c5c58c0cf479f9bb7bfeb29353641d33700f5d427b3587b36/fbgemm_gpu_nightly-2025.9.6-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "55f88d0848c8f1d98f2705a8fe67d97566248b3727da6124fd277d64eceb7e2b",
                "md5": "7ac45f874e11bb862f1d67813596b6ef",
                "sha256": "de6f4865960833e4956ba89fe140c6ec4d2058b0190a2e03b3b4e19cf366b267"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.9.6-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7ac45f874e11bb862f1d67813596b6ef",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 572871957,
            "upload_time": "2025-09-06T15:07:24",
            "upload_time_iso_8601": "2025-09-06T15:07:24.129758Z",
            "url": "https://files.pythonhosted.org/packages/55/f8/8d0848c8f1d98f2705a8fe67d97566248b3727da6124fd277d64eceb7e2b/fbgemm_gpu_nightly-2025.9.6-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8b8d509ed190ad483ab2ca20b765b15ddef786c69b40fba74f31e1b25c4e69a5",
                "md5": "ccf39d3a03763f6e7c4394a3a374c250",
                "sha256": "3fa8b357d164b4256ddf0ada93cddb128a5c0d488003d99f0c6a8c7be337b494"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.9.6-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ccf39d3a03763f6e7c4394a3a374c250",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 572872661,
            "upload_time": "2025-09-06T15:04:35",
            "upload_time_iso_8601": "2025-09-06T15:04:35.496852Z",
            "url": "https://files.pythonhosted.org/packages/8b/8d/509ed190ad483ab2ca20b765b15ddef786c69b40fba74f31e1b25c4e69a5/fbgemm_gpu_nightly-2025.9.6-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ed24fa4c62854e2ac78142b29e503d198f8f3df6ef1f73d949cefc8347de4d42",
                "md5": "898780c4f8009126772fa10a18b760a6",
                "sha256": "8d6310ca9c47f0a5c5583473019d0e5b2e6ffeecf4d5c5073a7280e4702c2e87"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.9.6-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "898780c4f8009126772fa10a18b760a6",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 581020936,
            "upload_time": "2025-09-06T15:04:03",
            "upload_time_iso_8601": "2025-09-06T15:04:03.459797Z",
            "url": "https://files.pythonhosted.org/packages/ed/24/fa4c62854e2ac78142b29e503d198f8f3df6ef1f73d949cefc8347de4d42/fbgemm_gpu_nightly-2025.9.6-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "91d2c9dd740e08a7d563a92e272e8dd104d1aefc73ff1cf570cd3551291f2472",
                "md5": "17c137ab7335c00c2b893569cf96992f",
                "sha256": "55673ac0a3349397c87f64d9f433703e3791b339e2f6cb9875547a6e3736e99a"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.9.6-cp39-cp39-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "17c137ab7335c00c2b893569cf96992f",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 572874361,
            "upload_time": "2025-09-06T15:10:07",
            "upload_time_iso_8601": "2025-09-06T15:10:07.931353Z",
            "url": "https://files.pythonhosted.org/packages/91/d2/c9dd740e08a7d563a92e272e8dd104d1aefc73ff1cf570cd3551291f2472/fbgemm_gpu_nightly-2025.9.6-cp39-cp39-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-06 15:08:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly"
}
        
Elapsed time: 4.62767s