fbgemm-gpu-nightly


Namefbgemm-gpu-nightly JSON
Version 2024.12.18 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2024-12-18 14:16:09
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2024.12.18",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "155e49e8095df34c4b5c1841fe1cceb79ddd4392fd8152f43adfa5b220a3adab",
                "md5": "f69a63156c1dbd25d1881f9265094f4a",
                "sha256": "39af5dd72a37bee722ec098178a59387e27bd93ab2f422e6ac9b8f68d519f727"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.12.18-cp310-cp310-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "f69a63156c1dbd25d1881f9265094f4a",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 406973731,
            "upload_time": "2024-12-18T14:16:09",
            "upload_time_iso_8601": "2024-12-18T14:16:09.424576Z",
            "url": "https://files.pythonhosted.org/packages/15/5e/49e8095df34c4b5c1841fe1cceb79ddd4392fd8152f43adfa5b220a3adab/fbgemm_gpu_nightly-2024.12.18-cp310-cp310-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e6781156858c76a18e3432af9950473ae6cef178c61aacdb6fc45d8b7f257141",
                "md5": "a908c284277f5129b7e13ea5bedf5ccb",
                "sha256": "08233c55d3ec166ff67f4b7813e71c80933a612750833d59345d24a5df9cb52f"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.12.18-cp311-cp311-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a908c284277f5129b7e13ea5bedf5ccb",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 406974279,
            "upload_time": "2024-12-18T14:15:43",
            "upload_time_iso_8601": "2024-12-18T14:15:43.334358Z",
            "url": "https://files.pythonhosted.org/packages/e6/78/1156858c76a18e3432af9950473ae6cef178c61aacdb6fc45d8b7f257141/fbgemm_gpu_nightly-2024.12.18-cp311-cp311-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f067f9cdb0a53c8433c2300951bfca7b4e1f97d4b07a1e150835bb2118ccb751",
                "md5": "f50b8117ada68840f1dd118342701cc4",
                "sha256": "1a6799d58a1bc02e618d9e8533cf7fb33ea22763470ce7b6a6c759ca0728f1a6"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.12.18-cp312-cp312-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "f50b8117ada68840f1dd118342701cc4",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 406974106,
            "upload_time": "2024-12-18T14:13:54",
            "upload_time_iso_8601": "2024-12-18T14:13:54.448083Z",
            "url": "https://files.pythonhosted.org/packages/f0/67/f9cdb0a53c8433c2300951bfca7b4e1f97d4b07a1e150835bb2118ccb751/fbgemm_gpu_nightly-2024.12.18-cp312-cp312-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "61cfa6f244985e0dfd1959137a8da1d06c218719b6a2ee359308a9ce535c55f7",
                "md5": "123b89adad5d441c1e04ec4f52a07c00",
                "sha256": "a8dc584d57dd7f2eb0777d4adfa691b7946e40364a3433306bc42d9b40b91851"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.12.18-cp39-cp39-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "123b89adad5d441c1e04ec4f52a07c00",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 406974839,
            "upload_time": "2024-12-18T14:15:13",
            "upload_time_iso_8601": "2024-12-18T14:15:13.807048Z",
            "url": "https://files.pythonhosted.org/packages/61/cf/a6f244985e0dfd1959137a8da1d06c218719b6a2ee359308a9ce535c55f7/fbgemm_gpu_nightly-2024.12.18-cp39-cp39-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-18 14:16:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly"
}
        
Elapsed time: 1.13592s