fbgemm-gpu-nightly


Namefbgemm-gpu-nightly JSON
Version 2025.10.19 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-10-19 15:18:03
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.10.19",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3b7e03569615ea11b2cfbc2c1442b115a7ca1ec59f8968dbf9bb3197df277654",
                "md5": "4a5a610aafad5ac7250584c739077fb9",
                "sha256": "0ca2bd36f9f49a34f08bd1e8dd1619e4a0e4ade4db4d61eea76e004f58db8003"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.10.19-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "4a5a610aafad5ac7250584c739077fb9",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 585502381,
            "upload_time": "2025-10-19T15:18:03",
            "upload_time_iso_8601": "2025-10-19T15:18:03.531828Z",
            "url": "https://files.pythonhosted.org/packages/3b/7e/03569615ea11b2cfbc2c1442b115a7ca1ec59f8968dbf9bb3197df277654/fbgemm_gpu_nightly-2025.10.19-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a57ea9582025fd8c552b2c2c4d931ecbb4a90721181bef57f8ce2447b467f94a",
                "md5": "06dd67ba891e832774bfa87798527c42",
                "sha256": "2853a05b70057358ca45eb3da76ad4fad36ad3acba6136fbc88220fc823f54a6"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.10.19-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "06dd67ba891e832774bfa87798527c42",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 585502051,
            "upload_time": "2025-10-19T15:17:25",
            "upload_time_iso_8601": "2025-10-19T15:17:25.339836Z",
            "url": "https://files.pythonhosted.org/packages/a5/7e/a9582025fd8c552b2c2c4d931ecbb4a90721181bef57f8ce2447b467f94a/fbgemm_gpu_nightly-2025.10.19-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9687fedffc5c55092ba12810a7f377176b7f2bdf43a18d164ff0e9615dfafab8",
                "md5": "6d63d0a4d74ab38c9183be0e5f8d6533",
                "sha256": "1b64ed183fc747b997e588856d3fd7e71d8e5a1c460e41fd2d16164505ce4164"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.10.19-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "6d63d0a4d74ab38c9183be0e5f8d6533",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 585502607,
            "upload_time": "2025-10-19T15:14:23",
            "upload_time_iso_8601": "2025-10-19T15:14:23.219835Z",
            "url": "https://files.pythonhosted.org/packages/96/87/fedffc5c55092ba12810a7f377176b7f2bdf43a18d164ff0e9615dfafab8/fbgemm_gpu_nightly-2025.10.19-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7407d125b185de47866796b1e250cc11c851b2b117fde3033e906a7f5a961c49",
                "md5": "5ace216c6885a4604a826964b753b3a6",
                "sha256": "5ef21d195709754695fad22a732e789935d19755b0fc6bee3a9fba62b06a201a"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.10.19-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "5ace216c6885a4604a826964b753b3a6",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 585503119,
            "upload_time": "2025-10-19T15:14:29",
            "upload_time_iso_8601": "2025-10-19T15:14:29.790112Z",
            "url": "https://files.pythonhosted.org/packages/74/07/d125b185de47866796b1e250cc11c851b2b117fde3033e906a7f5a961c49/fbgemm_gpu_nightly-2025.10.19-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-19 15:18:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly"
}
        
Elapsed time: 2.57232s