# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.7.8",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "6f481a2821c341d1922a4b81d542575990774a22a8cf4149ecb640adc39d01dd",
"md5": "c786c54f9f7b36bf2be5755301672ec8",
"sha256": "7d88fa8d33a35dba33b474b2607ec83a8b1cf390e479bf906e2742386e2dea1e"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.8-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "c786c54f9f7b36bf2be5755301672ec8",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 403234964,
"upload_time": "2025-07-08T15:16:49",
"upload_time_iso_8601": "2025-07-08T15:16:49.882081Z",
"url": "https://files.pythonhosted.org/packages/6f/48/1a2821c341d1922a4b81d542575990774a22a8cf4149ecb640adc39d01dd/fbgemm_gpu_nightly-2025.7.8-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "48aa8b9f33edd8b62db026b8ecfa7cc863803f21b75362c3c5770f24947a4513",
"md5": "98c934b1d4f72a92283268841e78f971",
"sha256": "0e9188d7dc2536bec1869ec17a5e9dbaa190d6e70824198f638b3e82c766b3f2"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.8-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "98c934b1d4f72a92283268841e78f971",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 403234427,
"upload_time": "2025-07-08T15:17:30",
"upload_time_iso_8601": "2025-07-08T15:17:30.405262Z",
"url": "https://files.pythonhosted.org/packages/48/aa/8b9f33edd8b62db026b8ecfa7cc863803f21b75362c3c5770f24947a4513/fbgemm_gpu_nightly-2025.7.8-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "cc131233bd9bf7a42cf0b8b5c93ff0dab4827ef36f0400c875d2a4f2f509059c",
"md5": "234c20a62fc5ce8fc382fd48e2f3fa4f",
"sha256": "50eae95f0c9ccc53bd0d6b911672d485818fd320a31df37171c2f6d42a70ecf8"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.8-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "234c20a62fc5ce8fc382fd48e2f3fa4f",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 408292417,
"upload_time": "2025-07-08T15:17:27",
"upload_time_iso_8601": "2025-07-08T15:17:27.597342Z",
"url": "https://files.pythonhosted.org/packages/cc/13/1233bd9bf7a42cf0b8b5c93ff0dab4827ef36f0400c875d2a4f2f509059c/fbgemm_gpu_nightly-2025.7.8-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2cbe3b46453c7b11ae3ccf6702b980c97d154413eaf527b57780fd625d8ab029",
"md5": "fe8bc0cba127e01d623f7eadf3ebd1a1",
"sha256": "42efdea115bd2684b41c928716478a1fc25a48b393fa53353ac46ab924cc7628"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.8-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "fe8bc0cba127e01d623f7eadf3ebd1a1",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 403235633,
"upload_time": "2025-07-08T15:17:53",
"upload_time_iso_8601": "2025-07-08T15:17:53.318166Z",
"url": "https://files.pythonhosted.org/packages/2c/be/3b46453c7b11ae3ccf6702b980c97d154413eaf527b57780fd625d8ab029/fbgemm_gpu_nightly-2025.7.8-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "58dd9c8407da337148ee250a86da96f5fb3c5c3cfd8a2401e2dd66898d90a3a8",
"md5": "11b1a74a603d976ea449140fc3cd4774",
"sha256": "51ddf60f0a5c47c6594ad509649338e5d51b01ab72249680cfe46dac526da166"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.7.8-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "11b1a74a603d976ea449140fc3cd4774",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 408296029,
"upload_time": "2025-07-08T15:21:08",
"upload_time_iso_8601": "2025-07-08T15:21:08.533715Z",
"url": "https://files.pythonhosted.org/packages/58/dd/9c8407da337148ee250a86da96f5fb3c5c3cfd8a2401e2dd66898d90a3a8/fbgemm_gpu_nightly-2025.7.8-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-08 15:16:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly"
}