fbgemm-gpu-nightly


Namefbgemm-gpu-nightly JSON
Version 2025.7.28 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-07-28 15:24:19
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.7.28",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b07e6876cfcef88f2fa93a96ab1b858697250fd3a7c17af74c65717a445d9eb5",
                "md5": "2c5e5d89636de191056a0e29115834fb",
                "sha256": "06f1e1f139c4ad988eb7a1053f4e1a9634e16c57b6f455db9f197156a4f6e831"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.7.28-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "2c5e5d89636de191056a0e29115834fb",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 408600276,
            "upload_time": "2025-07-28T15:24:19",
            "upload_time_iso_8601": "2025-07-28T15:24:19.445586Z",
            "url": "https://files.pythonhosted.org/packages/b0/7e/6876cfcef88f2fa93a96ab1b858697250fd3a7c17af74c65717a445d9eb5/fbgemm_gpu_nightly-2025.7.28-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7d94cb0770582c8ed6a85183facd1e4a634509258dd3e6eab34e1f7ba94185b9",
                "md5": "8a8f67e072b65ddf7996c70c43ead3a8",
                "sha256": "f7a049b339f8220184c1c5581b4628e38a03628eb8d9ae53df2e32c2d5c75e88"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.7.28-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "8a8f67e072b65ddf7996c70c43ead3a8",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 403506939,
            "upload_time": "2025-07-28T15:23:56",
            "upload_time_iso_8601": "2025-07-28T15:23:56.262197Z",
            "url": "https://files.pythonhosted.org/packages/7d/94/cb0770582c8ed6a85183facd1e4a634509258dd3e6eab34e1f7ba94185b9/fbgemm_gpu_nightly-2025.7.28-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0822db5d63448c42ac2d52b90b61c3edb06e7c55f4505b11384cf53ba988f2e3",
                "md5": "19f3a8c0a08e617008658327df38e955",
                "sha256": "bf632a34d252708d250fe44450ccc3305997a360c4aac73e9b0fa6aa74ca029b"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.7.28-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "19f3a8c0a08e617008658327df38e955",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 408601131,
            "upload_time": "2025-07-28T15:21:11",
            "upload_time_iso_8601": "2025-07-28T15:21:11.655305Z",
            "url": "https://files.pythonhosted.org/packages/08/22/db5d63448c42ac2d52b90b61c3edb06e7c55f4505b11384cf53ba988f2e3/fbgemm_gpu_nightly-2025.7.28-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a229cfdab3c67cf63e3dda40b74aafbff6078aed2cc3c3cbc0e095224236d594",
                "md5": "7385e378aac327b574f69bb186a17d91",
                "sha256": "3b5c6f0e5403d955332358f4490a77d06793e256d921ed2d2bf918aadabaa01d"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.7.28-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7385e378aac327b574f69bb186a17d91",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 403507539,
            "upload_time": "2025-07-28T15:20:46",
            "upload_time_iso_8601": "2025-07-28T15:20:46.593963Z",
            "url": "https://files.pythonhosted.org/packages/a2/29/cfdab3c67cf63e3dda40b74aafbff6078aed2cc3c3cbc0e095224236d594/fbgemm_gpu_nightly-2025.7.28-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a61afca4185d92333283af55b929b08f51e4c1d28cd82989409b89cd4f826997",
                "md5": "7f70baa2852f980a4efbfcba8d4d69f3",
                "sha256": "c06dbb8c9aed04b6e6f1ae39a4c2411925d949528e576ae2cd705c5c65346e9a"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2025.7.28-cp39-cp39-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7f70baa2852f980a4efbfcba8d4d69f3",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 408600573,
            "upload_time": "2025-07-28T15:24:08",
            "upload_time_iso_8601": "2025-07-28T15:24:08.405753Z",
            "url": "https://files.pythonhosted.org/packages/a6/1a/fca4185d92333283af55b929b08f51e4c1d28cd82989409b89cd4f826997/fbgemm_gpu_nightly-2025.7.28-cp39-cp39-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-28 15:24:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly"
}
        
Elapsed time: 1.41170s