# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.9.6",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f956557f7aaed88c5c58c0cf479f9bb7bfeb29353641d33700f5d427b3587b36",
"md5": "b53d20517478f3188441f62384fac07b",
"sha256": "0e8c8b0397c7653fa6052e2cd149088db348f694b162fc4cd90492af13729eb5"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.9.6-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "b53d20517478f3188441f62384fac07b",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 581021709,
"upload_time": "2025-09-06T15:08:24",
"upload_time_iso_8601": "2025-09-06T15:08:24.200213Z",
"url": "https://files.pythonhosted.org/packages/f9/56/557f7aaed88c5c58c0cf479f9bb7bfeb29353641d33700f5d427b3587b36/fbgemm_gpu_nightly-2025.9.6-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "55f88d0848c8f1d98f2705a8fe67d97566248b3727da6124fd277d64eceb7e2b",
"md5": "7ac45f874e11bb862f1d67813596b6ef",
"sha256": "de6f4865960833e4956ba89fe140c6ec4d2058b0190a2e03b3b4e19cf366b267"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.9.6-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "7ac45f874e11bb862f1d67813596b6ef",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 572871957,
"upload_time": "2025-09-06T15:07:24",
"upload_time_iso_8601": "2025-09-06T15:07:24.129758Z",
"url": "https://files.pythonhosted.org/packages/55/f8/8d0848c8f1d98f2705a8fe67d97566248b3727da6124fd277d64eceb7e2b/fbgemm_gpu_nightly-2025.9.6-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8b8d509ed190ad483ab2ca20b765b15ddef786c69b40fba74f31e1b25c4e69a5",
"md5": "ccf39d3a03763f6e7c4394a3a374c250",
"sha256": "3fa8b357d164b4256ddf0ada93cddb128a5c0d488003d99f0c6a8c7be337b494"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.9.6-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ccf39d3a03763f6e7c4394a3a374c250",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 572872661,
"upload_time": "2025-09-06T15:04:35",
"upload_time_iso_8601": "2025-09-06T15:04:35.496852Z",
"url": "https://files.pythonhosted.org/packages/8b/8d/509ed190ad483ab2ca20b765b15ddef786c69b40fba74f31e1b25c4e69a5/fbgemm_gpu_nightly-2025.9.6-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ed24fa4c62854e2ac78142b29e503d198f8f3df6ef1f73d949cefc8347de4d42",
"md5": "898780c4f8009126772fa10a18b760a6",
"sha256": "8d6310ca9c47f0a5c5583473019d0e5b2e6ffeecf4d5c5073a7280e4702c2e87"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.9.6-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "898780c4f8009126772fa10a18b760a6",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 581020936,
"upload_time": "2025-09-06T15:04:03",
"upload_time_iso_8601": "2025-09-06T15:04:03.459797Z",
"url": "https://files.pythonhosted.org/packages/ed/24/fa4c62854e2ac78142b29e503d198f8f3df6ef1f73d949cefc8347de4d42/fbgemm_gpu_nightly-2025.9.6-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "91d2c9dd740e08a7d563a92e272e8dd104d1aefc73ff1cf570cd3551291f2472",
"md5": "17c137ab7335c00c2b893569cf96992f",
"sha256": "55673ac0a3349397c87f64d9f433703e3791b339e2f6cb9875547a6e3736e99a"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.9.6-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "17c137ab7335c00c2b893569cf96992f",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 572874361,
"upload_time": "2025-09-06T15:10:07",
"upload_time_iso_8601": "2025-09-06T15:10:07.931353Z",
"url": "https://files.pythonhosted.org/packages/91/d2/c9dd740e08a7d563a92e272e8dd104d1aefc73ff1cf570cd3551291f2472/fbgemm_gpu_nightly-2025.9.6-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-06 15:08:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly"
}