fbgemm-gpu-nightly


Namefbgemm-gpu-nightly JSON
Version 2024.5.21 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2024-05-21 14:11:58
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2024.5.21",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "224a3145048cb2673d18275da6bcf202e48ec5907858feac3f4e3fd851801484",
                "md5": "7eac5f3e41df3c4bf0163d760d09c7c9",
                "sha256": "b6211b1cf191689f62300e12c1120f6c4c38c48a3f71b01fabddef4a16b1b322"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.5.21-cp310-cp310-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7eac5f3e41df3c4bf0163d760d09c7c9",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 222884258,
            "upload_time": "2024-05-21T14:11:58",
            "upload_time_iso_8601": "2024-05-21T14:11:58.672223Z",
            "url": "https://files.pythonhosted.org/packages/22/4a/3145048cb2673d18275da6bcf202e48ec5907858feac3f4e3fd851801484/fbgemm_gpu_nightly-2024.5.21-cp310-cp310-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9f5df827508c2fdcf7fe87fccaf30ff861b028be580bc51af83c27d7d681ea79",
                "md5": "889c35a366ac2671af2c9c232b1c2d14",
                "sha256": "a6d03665eb8fd79d46361a1306ad3ab1c794a20aca978c43497db568ee175605"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.5.21-cp311-cp311-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "889c35a366ac2671af2c9c232b1c2d14",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 223620598,
            "upload_time": "2024-05-21T14:12:17",
            "upload_time_iso_8601": "2024-05-21T14:12:17.940527Z",
            "url": "https://files.pythonhosted.org/packages/9f/5d/f827508c2fdcf7fe87fccaf30ff861b028be580bc51af83c27d7d681ea79/fbgemm_gpu_nightly-2024.5.21-cp311-cp311-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c3ed89e2b78dbf55e45b181b014fdcac5edb094e637f9be40bbe9fcd2418f11c",
                "md5": "f46660e751c89c3cee7d572b2767dfcc",
                "sha256": "bc747a6204594085df09a4e7edba23599d1e3c341756ffa5908682c873da512d"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.5.21-cp312-cp312-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "f46660e751c89c3cee7d572b2767dfcc",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 223620442,
            "upload_time": "2024-05-21T14:12:14",
            "upload_time_iso_8601": "2024-05-21T14:12:14.044883Z",
            "url": "https://files.pythonhosted.org/packages/c3/ed/89e2b78dbf55e45b181b014fdcac5edb094e637f9be40bbe9fcd2418f11c/fbgemm_gpu_nightly-2024.5.21-cp312-cp312-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a7ae485decb2aa04118d955fc4fea3f6f7f8c5efa5603fff83f2a17e7f816495",
                "md5": "c65556683f2c649b206650f49b746a2b",
                "sha256": "e93621310f7166375dd2983467985046db4dc9c713ddf47664fe225761074234"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly-2024.5.21-cp39-cp39-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "c65556683f2c649b206650f49b746a2b",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 222883927,
            "upload_time": "2024-05-21T14:14:33",
            "upload_time_iso_8601": "2024-05-21T14:14:33.236575Z",
            "url": "https://files.pythonhosted.org/packages/a7/ae/485decb2aa04118d955fc4fea3f6f7f8c5efa5603fff83f2a17e7f816495/fbgemm_gpu_nightly-2024.5.21-cp39-cp39-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-21 14:11:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly"
}
        
Elapsed time: 0.32354s