# FBGEMM_GPU
[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.1.21",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "854fb098c4b8d9628cc4d0484e7d886f614a818bcd9510984e1553791e26699f",
"md5": "4e3a6dca583ae769649ede8cdfedfbc3",
"sha256": "f8f9f6803297b3acb4662f7bf0568d904f029d5341f33c3c053124e2d93d3ca1"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.1.21-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "4e3a6dca583ae769649ede8cdfedfbc3",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 460874281,
"upload_time": "2025-01-21T14:12:57",
"upload_time_iso_8601": "2025-01-21T14:12:57.227101Z",
"url": "https://files.pythonhosted.org/packages/85/4f/b098c4b8d9628cc4d0484e7d886f614a818bcd9510984e1553791e26699f/fbgemm_gpu_nightly-2025.1.21-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2cb191081ca68e53b5bda695234199a4318be480c69d48dfa37a3f9d3a94b3f0",
"md5": "ce6f629c0d202502395b7885e7d1ee4e",
"sha256": "25a8ef44195e2d7e1014c1c7a95d1ef68677e8c832e5caa4a05d1dc60d0e3e5a"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.1.21-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ce6f629c0d202502395b7885e7d1ee4e",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 460874016,
"upload_time": "2025-01-21T14:11:54",
"upload_time_iso_8601": "2025-01-21T14:11:54.025875Z",
"url": "https://files.pythonhosted.org/packages/2c/b1/91081ca68e53b5bda695234199a4318be480c69d48dfa37a3f9d3a94b3f0/fbgemm_gpu_nightly-2025.1.21-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e446768364c6ac652b71b46b47a3f70b3156401974c8152ffcbb418e3fa8ac03",
"md5": "0987506043027fd7f5104b2615e0bc9d",
"sha256": "b66982214a83772c242f0bf8169cc561b0fecf04e98a2d9f72b259c35b0c2e91"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.1.21-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "0987506043027fd7f5104b2615e0bc9d",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 460873315,
"upload_time": "2025-01-21T14:10:18",
"upload_time_iso_8601": "2025-01-21T14:10:18.802416Z",
"url": "https://files.pythonhosted.org/packages/e4/46/768364c6ac652b71b46b47a3f70b3156401974c8152ffcbb418e3fa8ac03/fbgemm_gpu_nightly-2025.1.21-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "15d0277bf2d9d7f5cca4354ee57724cc076ce706233dcef96a7986e11ea949dc",
"md5": "a036cc740952f54759beefc640ef21b4",
"sha256": "c0b52e6bdccb7b9e978fd3054c917f00845555dcf11be559808ba2e9c1c2baf6"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.1.21-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "a036cc740952f54759beefc640ef21b4",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 463955608,
"upload_time": "2025-01-21T14:11:01",
"upload_time_iso_8601": "2025-01-21T14:11:01.322249Z",
"url": "https://files.pythonhosted.org/packages/15/d0/277bf2d9d7f5cca4354ee57724cc076ce706233dcef96a7986e11ea949dc/fbgemm_gpu_nightly-2025.1.21-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a8f24e4f9d213b4da10837002ab6a4ab2b134e290a340a45882893655d3f5f94",
"md5": "1e5f6c46af3f7c881e769406333d5887",
"sha256": "f1111e1630669f2953f790ea5f725724a4f6af84f4ca95ca456a77fef910e213"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly-2025.1.21-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "1e5f6c46af3f7c881e769406333d5887",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 460871481,
"upload_time": "2025-01-21T14:13:38",
"upload_time_iso_8601": "2025-01-21T14:13:38.222570Z",
"url": "https://files.pythonhosted.org/packages/a8/f2/4e4f9d213b4da10837002ab6a4ab2b134e290a340a45882893655d3f5f94/fbgemm_gpu_nightly-2025.1.21-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-21 14:12:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly"
}