GEMDAT


NameGEMDAT JSON
Version 1.5.1 PyPI version JSON
download
home_pageNone
SummaryGeneralized Molecular Dynamics Analysis Tool
upload_time2024-11-25 11:13:42
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseApache 2.0 License
keywords analysis molecular dynamics diffusion batteries
VCS
bugtrack_url
requirements matplotlib MDAnalysis numpy pymatgen rich scikit-image scipy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Documentation Status](https://readthedocs.org/projects/gemdat/badge/?version=latest)](https://gemdat.readthedocs.io/en/latest/?badge=latest)
[![Tests for GEMDAT](https://github.com/GEMDAT-repos/GEMDAT/actions/workflows/tests.yaml/badge.svg)](https://github.com/GEMDAT-repos/GEMDAT/actions/workflows/tests.yaml)
![Coverage](https://gist.githubusercontent.com/stefsmeets/b599ff4ccf4a6d201a984502f049da73/raw/covbadge.svg)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/gemdat)](https://pypi.org/project/gemdat/)
[![PyPI](https://img.shields.io/pypi/v/gemdat.svg?style=flat)](https://pypi.org/project/gemdat/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.8401669.svg)](https://doi.org/10.5281/zenodo.8401669)

![GEMDAT banner](https://raw.githubusercontent.com/GEMDAT-repos/GEMDAT/main/src/gemdat/data/logo_on_white.png#gh-light-mode-only)
![GEMDAT banner](https://raw.githubusercontent.com/GEMDAT-repos/GEMDAT/main/src/gemdat/data/logo_on_black.png#gh-dark-mode-only)

# GEMDAT

Gemdat is a Python library for the analysis of diffusion in solid-state electrolytes from Molecular Dynamics simulations. Gemdat is built on top of [Pymatgen](https://pymatgen.org/), making it straightforward to integrate it into your Pymatgen-based workflows.

With Gemdat, you can:

- Explore your MD simulation via an easy-to-use Python API
- Load and analyze trajectories from VASP and LAMMPS simulation data
- Find jumps and transitions between sites
- Effortlessly calculate tracer and jump diffusivity
- Characterize and visualize diffusion pathways
- Plot radial distribution functions

To install:

```console
pip install gemdat
```

The source code is available from [Github](https://github.com/GEMDAT-repos/GEMDAT).

Suggestions, improvements, and edits are most welcome.

## Usage

The following snippet to analyze the diffusion trajectory from VASP data.

```python
from gemdat import Trajectory

trajectory = Trajectory.from_vasprun('../example/vasprun.xml')

trajectory.plot_displacement_per_element()

diff_trajectory = trajectory.filter('Li')

diff_trajectory.plot_displacement_per_atom()
diff_trajectory.plot_displacement_histogram()
diff_trajectory.plot_frequency_vs_occurence()
diff_trajectory.plot_vibrational_amplitudes()
```

Characterize transitions and jumps between sites:

```python
from gemdat.io import load_known_material

sites = load_known_material('argyrodite', supercell=(2, 1, 1))

transitions = trajectory.transitions_between_sites(
    sites=sites,
    floating_specie='Li',
)

jumps = transitions.jumps()

jumps.plot_jumps_vs_distance()
jumps.plot_jumps_vs_time()
jumps.plot_collective_jumps()
jumps.plot_jumps_3d()

jumps.jump_diffusivity(dimensions=3)
```

To calculate different metrics, such as tracer diffusivity:

```python
from gemdat import TrajectoryMetrics

metrics = TrajectoryMetrics(diff_trajectory)

metrics.tracer_diffusivity(dimensions=3)
metrics.haven_ratio(dimensions=3)
metrics.tracer_conductivity(dimensions=3)
metrics.particle_density()
metrics.vibration_amplitude()
```

## Development

Check out our [Contributing Guidelines](CONTRIBUTING.md#Getting-started-with-development) to get started with development.

## How to Cite

- Victor Azizi, Stef Smeets, Anastasiia K. Lavrinenko and Simone Ciarella. GEMDAT (Version 1.5.1) [Computer software]. https://github.com/GEMDAT-repos/GEMDAT, doi: [10.5281/zenodo.8401669](https://dx.doi.org/10.5281/zenodo.8401669)

## Credits

The code in this repository is based on [Matlab code to analyse Molecular Dynamics simulations](https://bitbucket.org/niekdeklerk/md-analysis-with-matlab/src/master/).

For background information on how some of the properties are calculated, check out the accompanying paper:

- Niek J.J. de Klerk, Eveline van der Maas and Marnix Wagemaker, ACS Applied Energy Materials, (2018), doi: [10.1021/acsaem.8b00457](https://doi.org/10.1021/acsaem.8b00457)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "GEMDAT",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "analysis, molecular dynamics, diffusion, batteries",
    "author": null,
    "author_email": "Victor Azizi <v.azizi@esciencecenter.nl>, Stef Smeets <s.smeets@esciencecenter.nl>",
    "download_url": "https://files.pythonhosted.org/packages/d9/2b/41ba08aa1ec44ded6200469558ff84634603bb2ccbd181cb16a6c7604ffe/gemdat-1.5.1.tar.gz",
    "platform": null,
    "description": "[![Documentation Status](https://readthedocs.org/projects/gemdat/badge/?version=latest)](https://gemdat.readthedocs.io/en/latest/?badge=latest)\n[![Tests for GEMDAT](https://github.com/GEMDAT-repos/GEMDAT/actions/workflows/tests.yaml/badge.svg)](https://github.com/GEMDAT-repos/GEMDAT/actions/workflows/tests.yaml)\n![Coverage](https://gist.githubusercontent.com/stefsmeets/b599ff4ccf4a6d201a984502f049da73/raw/covbadge.svg)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/gemdat)](https://pypi.org/project/gemdat/)\n[![PyPI](https://img.shields.io/pypi/v/gemdat.svg?style=flat)](https://pypi.org/project/gemdat/)\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.8401669.svg)](https://doi.org/10.5281/zenodo.8401669)\n\n![GEMDAT banner](https://raw.githubusercontent.com/GEMDAT-repos/GEMDAT/main/src/gemdat/data/logo_on_white.png#gh-light-mode-only)\n![GEMDAT banner](https://raw.githubusercontent.com/GEMDAT-repos/GEMDAT/main/src/gemdat/data/logo_on_black.png#gh-dark-mode-only)\n\n# GEMDAT\n\nGemdat is a Python library for the analysis of diffusion in solid-state electrolytes from Molecular Dynamics simulations. Gemdat is built on top of [Pymatgen](https://pymatgen.org/), making it straightforward to integrate it into your Pymatgen-based workflows.\n\nWith Gemdat, you can:\n\n- Explore your MD simulation via an easy-to-use Python API\n- Load and analyze trajectories from VASP and LAMMPS simulation data\n- Find jumps and transitions between sites\n- Effortlessly calculate tracer and jump diffusivity\n- Characterize and visualize diffusion pathways\n- Plot radial distribution functions\n\nTo install:\n\n```console\npip install gemdat\n```\n\nThe source code is available from [Github](https://github.com/GEMDAT-repos/GEMDAT).\n\nSuggestions, improvements, and edits are most welcome.\n\n## Usage\n\nThe following snippet to analyze the diffusion trajectory from VASP data.\n\n```python\nfrom gemdat import Trajectory\n\ntrajectory = Trajectory.from_vasprun('../example/vasprun.xml')\n\ntrajectory.plot_displacement_per_element()\n\ndiff_trajectory = trajectory.filter('Li')\n\ndiff_trajectory.plot_displacement_per_atom()\ndiff_trajectory.plot_displacement_histogram()\ndiff_trajectory.plot_frequency_vs_occurence()\ndiff_trajectory.plot_vibrational_amplitudes()\n```\n\nCharacterize transitions and jumps between sites:\n\n```python\nfrom gemdat.io import load_known_material\n\nsites = load_known_material('argyrodite', supercell=(2, 1, 1))\n\ntransitions = trajectory.transitions_between_sites(\n    sites=sites,\n    floating_specie='Li',\n)\n\njumps = transitions.jumps()\n\njumps.plot_jumps_vs_distance()\njumps.plot_jumps_vs_time()\njumps.plot_collective_jumps()\njumps.plot_jumps_3d()\n\njumps.jump_diffusivity(dimensions=3)\n```\n\nTo calculate different metrics, such as tracer diffusivity:\n\n```python\nfrom gemdat import TrajectoryMetrics\n\nmetrics = TrajectoryMetrics(diff_trajectory)\n\nmetrics.tracer_diffusivity(dimensions=3)\nmetrics.haven_ratio(dimensions=3)\nmetrics.tracer_conductivity(dimensions=3)\nmetrics.particle_density()\nmetrics.vibration_amplitude()\n```\n\n## Development\n\nCheck out our [Contributing Guidelines](CONTRIBUTING.md#Getting-started-with-development) to get started with development.\n\n## How to Cite\n\n- Victor Azizi, Stef Smeets, Anastasiia K. Lavrinenko and Simone Ciarella. GEMDAT (Version 1.5.1) [Computer software]. https://github.com/GEMDAT-repos/GEMDAT, doi: [10.5281/zenodo.8401669](https://dx.doi.org/10.5281/zenodo.8401669)\n\n## Credits\n\nThe code in this repository is based on [Matlab code to analyse Molecular Dynamics simulations](https://bitbucket.org/niekdeklerk/md-analysis-with-matlab/src/master/).\n\nFor background information on how some of the properties are calculated, check out the accompanying paper:\n\n- Niek J.J. de Klerk, Eveline van der Maas and Marnix Wagemaker, ACS Applied Energy Materials, (2018), doi: [10.1021/acsaem.8b00457](https://doi.org/10.1021/acsaem.8b00457)\n",
    "bugtrack_url": null,
    "license": "Apache 2.0 License",
    "summary": "Generalized Molecular Dynamics Analysis Tool",
    "version": "1.5.1",
    "project_urls": {
        "changelog": "https://github.com/GEMDAT-repos/GEMDAT/releases",
        "documentation": "https://gemdat.readthedocs.io",
        "homepage": "https://github.com/GEMDAT-repos/GEMDAT",
        "issues": "https://github.com/GEMDAT-repos/GEMDAT/issues"
    },
    "split_keywords": [
        "analysis",
        " molecular dynamics",
        " diffusion",
        " batteries"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b72e3b3cc958d4b63375531e82fec8986053fc9083e14b75def13c840c1bd363",
                "md5": "78d223f30bac6a82feda16d248dff589",
                "sha256": "e62f5225f557d7972a8fa5e1223b4f799f654635cad9dd6ffa29841ba4e77c12"
            },
            "downloads": -1,
            "filename": "GEMDAT-1.5.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "78d223f30bac6a82feda16d248dff589",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 538736,
            "upload_time": "2024-11-25T11:13:39",
            "upload_time_iso_8601": "2024-11-25T11:13:39.864617Z",
            "url": "https://files.pythonhosted.org/packages/b7/2e/3b3cc958d4b63375531e82fec8986053fc9083e14b75def13c840c1bd363/GEMDAT-1.5.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d92b41ba08aa1ec44ded6200469558ff84634603bb2ccbd181cb16a6c7604ffe",
                "md5": "9f8a483acfeb60b5773557e932aa8b7d",
                "sha256": "c7d0bc919c969eac6e6e029821402cc89d45df923b4c4d1c95febc98815f3dea"
            },
            "downloads": -1,
            "filename": "gemdat-1.5.1.tar.gz",
            "has_sig": false,
            "md5_digest": "9f8a483acfeb60b5773557e932aa8b7d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 515871,
            "upload_time": "2024-11-25T11:13:42",
            "upload_time_iso_8601": "2024-11-25T11:13:42.069694Z",
            "url": "https://files.pythonhosted.org/packages/d9/2b/41ba08aa1ec44ded6200469558ff84634603bb2ccbd181cb16a6c7604ffe/gemdat-1.5.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-25 11:13:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "GEMDAT-repos",
    "github_project": "GEMDAT",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.6.0"
                ]
            ]
        },
        {
            "name": "MDAnalysis",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pymatgen",
            "specs": [
                [
                    "!=",
                    "2024.2.20"
                ],
                [
                    ">=",
                    "2024.1.26"
                ]
            ]
        },
        {
            "name": "rich",
            "specs": []
        },
        {
            "name": "scikit-image",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        }
    ],
    "lcname": "gemdat"
}
        
Elapsed time: 0.40394s