# GenRisk
GenRisk is a package that implements different gene-based scoring schemes to analyze and find significant genes
within a phenotype in a population
## Citation
Rana Aldisi, Emadeldin Hassanin, Sugirthan Sivalingam, Andreas Buness, Hannah Klinkhammer, Andreas Mayr, Holger Fröhlich, Peter Krawitz, Carlo Maj, GenRisk: a tool for comprehensive genetic risk modeling, Bioinformatics, Volume 38, Issue 9, 1 May 2022, Pages 2651–2653, https://doi.org/10.1093/bioinformatics/btac152
## Requirements
* plink >= 1.9 https://www.cog-genomics.org/plink/
* R version >= 3.6.3
## Installation
Option 1: The latest release of ``GenRisk`` can be installed on python3+ with:
$ pip install genrisk
Option2: you can also install the package with the latest updates directly from `GitHub <https://github.com/AldisiRana/GenRisk>`_ with:
$ pip install git+https://github.com/AldisiRana/GenRisk.git
## Usage
### Score genes
This command calculate the gene-based scores for a given dataset.
It requires plink binary files, and an annotations file that contains all information needed for the score computation.
$ genrisk score-genes -a ../toy_example/toy_annotations.tsv -b ../toy_example/toy_data.bim -o toy_genes_scores_test_mod.tsv -t toy_vcf_scoring -v SNP -f gnomadAF -g gene -l ALT -d CADD_raw
* For further CLI options and parameters use --help
### Calculate p-values
This function calculates the p-values across the genes between two given groups
$ genrisk find-association -s toy_genes_scores.tsv -i info.pheno -t linear -c quan -a fdr_bh -v sex,age,bmi
* For further CLI options and parameters use --help
### Visualize
Visualize manhatten plot and qqplot for the data.
$ genrisk visualize -p logit_assoc_binary.tsv -i genes_info_ref.txt --genescol-1 genes
* For further CLI options and parameters use --help
### Create model
Create a prediction model (classifier or regressor) with given dataset
$ genrisk create-model -d toy_dataset_feats.tsv -o quan_regression_model -n quan_regression_model --model-type regressor -l quan --normalize
* For further CLI options and parameters use --help
### Test model
Evaluate a prediction model with a given dataset.
$ genrisk test-model --model-path regressor_model.pkl --input-file testing_dataset.tsv --model-type regressor
--labels-col target --samples-col IID
* For further CLI options and parameters use --help
### Get PRS scores
This command aquires a PGS file (provided by the user or downloaded from pgscatalog) then calculates the PRS scores for dataset.
Note: This command is interactive.
$ genrisk get-prs
* For further CLI options and parameters use --help
### Get GBRS
Calculate gene-based risk scores for individuals.
If users do not have weights for calculation, they can provide a file with the phenotype and weights will be calculated.
$genrisk get-gbrs --scores-file scores_file.tsv --weights-file weights_file.tsv --weights-col zscore --sum
* For further CLI options and parameters use --help
## Contact
If you have any questions or problems with the tool or its installation please feel free to create an issue in the repository or contact me via email:
aldisi.rana@gmail.com
Raw data
{
"_id": null,
"home_page": "https://github.com/AldisiRana/genrisk",
"name": "GenRisk",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7.5",
"maintainer_email": null,
"keywords": "genetics, scoring, risk, comprehensive",
"author": "Rana Aldisi",
"author_email": "aldisi.rana@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/c1/5a/da5214bbbcea3e56a1aa9e3e894588f073a206611be282c97732cd2b6b79/GenRisk-0.3.2.tar.gz",
"platform": null,
"description": "# GenRisk\n\nGenRisk is a package that implements different gene-based scoring schemes to analyze and find significant genes \nwithin a phenotype in a population\n\n## Citation\nRana Aldisi, Emadeldin Hassanin, Sugirthan Sivalingam, Andreas Buness, Hannah Klinkhammer, Andreas Mayr, Holger Fr\u00f6hlich, Peter Krawitz, Carlo Maj, GenRisk: a tool for comprehensive genetic risk modeling, Bioinformatics, Volume 38, Issue 9, 1 May 2022, Pages 2651\u20132653, https://doi.org/10.1093/bioinformatics/btac152\n\n## Requirements\n* plink >= 1.9 https://www.cog-genomics.org/plink/\n* R version >= 3.6.3\n\n## Installation\nOption 1: The latest release of ``GenRisk`` can be installed on python3+ with:\n\n $ pip install genrisk\n\nOption2: you can also install the package with the latest updates directly from `GitHub <https://github.com/AldisiRana/GenRisk>`_ with:\n\n $ pip install git+https://github.com/AldisiRana/GenRisk.git\n\n## Usage\n\n### Score genes\nThis command calculate the gene-based scores for a given dataset.\n\nIt requires plink binary files, and an annotations file that contains all information needed for the score computation.\n\n $ genrisk score-genes -a ../toy_example/toy_annotations.tsv -b ../toy_example/toy_data.bim -o toy_genes_scores_test_mod.tsv -t toy_vcf_scoring -v SNP -f gnomadAF -g gene -l ALT -d CADD_raw \n\n* For further CLI options and parameters use --help\n\n### Calculate p-values\nThis function calculates the p-values across the genes between two given groups\n \n $ genrisk find-association -s toy_genes_scores.tsv -i info.pheno -t linear -c quan -a fdr_bh -v sex,age,bmi \n\n* For further CLI options and parameters use --help\n\n### Visualize\nVisualize manhatten plot and qqplot for the data.\n\n $ genrisk visualize -p logit_assoc_binary.tsv -i genes_info_ref.txt --genescol-1 genes\n\n* For further CLI options and parameters use --help\n\n### Create model\nCreate a prediction model (classifier or regressor) with given dataset\n\n $ genrisk create-model -d toy_dataset_feats.tsv -o quan_regression_model -n quan_regression_model --model-type regressor -l quan --normalize\n\n* For further CLI options and parameters use --help\n\n### Test model\nEvaluate a prediction model with a given dataset.\n\n $ genrisk test-model --model-path regressor_model.pkl --input-file testing_dataset.tsv --model-type regressor \n --labels-col target --samples-col IID\n* For further CLI options and parameters use --help\n\n### Get PRS scores\nThis command aquires a PGS file (provided by the user or downloaded from pgscatalog) then calculates the PRS scores for dataset.\nNote: This command is interactive.\n\n $ genrisk get-prs\n* For further CLI options and parameters use --help\n\n### Get GBRS\nCalculate gene-based risk scores for individuals. \nIf users do not have weights for calculation, they can provide a file with the phenotype and weights will be calculated.\n\n $genrisk get-gbrs --scores-file scores_file.tsv --weights-file weights_file.tsv --weights-col zscore --sum\n* For further CLI options and parameters use --help\n\n## Contact\nIf you have any questions or problems with the tool or its installation please feel free to create an issue in the repository or contact me via email:\naldisi.rana@gmail.com\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Comprehensive genetic risk assessment",
"version": "0.3.2",
"project_urls": {
"Homepage": "https://github.com/AldisiRana/genrisk"
},
"split_keywords": [
"genetics",
" scoring",
" risk",
" comprehensive"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c1ebd6141bcebd6c4cd3763bc873fe2a27ccc9d3d9f635e874f95fff3373f53f",
"md5": "2d4ab4c5ba37d26c35edc94ff30f3e24",
"sha256": "d1b5353f45310872fce352b31a0a55aa62631f57e7a47fb5434d34884c8745b9"
},
"downloads": -1,
"filename": "GenRisk-0.3.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2d4ab4c5ba37d26c35edc94ff30f3e24",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7.5",
"size": 27303,
"upload_time": "2024-08-27T07:55:27",
"upload_time_iso_8601": "2024-08-27T07:55:27.545664Z",
"url": "https://files.pythonhosted.org/packages/c1/eb/d6141bcebd6c4cd3763bc873fe2a27ccc9d3d9f635e874f95fff3373f53f/GenRisk-0.3.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c15ada5214bbbcea3e56a1aa9e3e894588f073a206611be282c97732cd2b6b79",
"md5": "aa3e699224b3c584626bdd8ed95aa615",
"sha256": "ac267389c22b0f12583a5e96e55abeec9e101b4fb0cabbccdf006c050bcd13ad"
},
"downloads": -1,
"filename": "GenRisk-0.3.2.tar.gz",
"has_sig": false,
"md5_digest": "aa3e699224b3c584626bdd8ed95aa615",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7.5",
"size": 41868317,
"upload_time": "2024-08-27T07:55:33",
"upload_time_iso_8601": "2024-08-27T07:55:33.587097Z",
"url": "https://files.pythonhosted.org/packages/c1/5a/da5214bbbcea3e56a1aa9e3e894588f073a206611be282c97732cd2b6b79/GenRisk-0.3.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-27 07:55:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "AldisiRana",
"github_project": "genrisk",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "genrisk"
}