GenRisk


NameGenRisk JSON
Version 0.3.2 PyPI version JSON
download
home_pagehttps://github.com/AldisiRana/genrisk
SummaryComprehensive genetic risk assessment
upload_time2024-08-27 07:55:33
maintainerNone
docs_urlNone
authorRana Aldisi
requires_python>=3.7.5
licenseMIT
keywords genetics scoring risk comprehensive
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GenRisk

GenRisk is a package that implements different gene-based scoring schemes to analyze and find significant genes 
within a phenotype in a population

## Citation
Rana Aldisi, Emadeldin Hassanin, Sugirthan Sivalingam, Andreas Buness, Hannah Klinkhammer, Andreas Mayr, Holger Fröhlich, Peter Krawitz, Carlo Maj, GenRisk: a tool for comprehensive genetic risk modeling, Bioinformatics, Volume 38, Issue 9, 1 May 2022, Pages 2651–2653, https://doi.org/10.1093/bioinformatics/btac152

## Requirements
* plink >= 1.9 https://www.cog-genomics.org/plink/
* R version >= 3.6.3

## Installation
Option 1: The latest release of ``GenRisk`` can be installed on python3+ with:

    $ pip install genrisk

Option2: you can also install the package with the latest updates directly from `GitHub <https://github.com/AldisiRana/GenRisk>`_ with:

    $ pip install git+https://github.com/AldisiRana/GenRisk.git

## Usage

### Score genes
This command calculate the gene-based scores for a given dataset.

It requires plink binary files, and an annotations file that contains all information needed for the score computation.

    $ genrisk score-genes -a ../toy_example/toy_annotations.tsv -b ../toy_example/toy_data.bim -o toy_genes_scores_test_mod.tsv -t toy_vcf_scoring -v SNP -f gnomadAF -g gene -l ALT -d CADD_raw 

* For further CLI options and parameters use --help

### Calculate p-values
This function calculates the p-values across the genes between two given groups
    
    $ genrisk find-association -s toy_genes_scores.tsv -i info.pheno -t linear -c quan -a fdr_bh -v sex,age,bmi 

* For further CLI options and parameters use --help

### Visualize
Visualize manhatten plot and qqplot for the data.

    $ genrisk visualize -p logit_assoc_binary.tsv -i genes_info_ref.txt --genescol-1 genes

* For further CLI options and parameters use --help

### Create model
Create a prediction model (classifier or regressor) with given dataset

    $ genrisk create-model -d toy_dataset_feats.tsv -o quan_regression_model -n quan_regression_model --model-type regressor -l quan --normalize

* For further CLI options and parameters use --help

### Test model
Evaluate a prediction model with a given dataset.

    $ genrisk test-model --model-path regressor_model.pkl --input-file testing_dataset.tsv --model-type regressor 
    --labels-col target --samples-col IID
* For further CLI options and parameters use --help

### Get PRS scores
This command aquires a PGS file (provided by the user or downloaded from pgscatalog) then calculates the PRS scores for dataset.
Note: This command is interactive.

    $ genrisk get-prs
* For further CLI options and parameters use --help

### Get GBRS
Calculate gene-based risk scores for individuals. 
If users do not have weights for calculation, they can provide a file with the phenotype and weights will be calculated.

    $genrisk get-gbrs --scores-file scores_file.tsv --weights-file weights_file.tsv --weights-col zscore --sum
* For further CLI options and parameters use --help

## Contact
If you have any questions or problems with the tool or its installation please feel free to create an issue in the repository or contact me via email:
aldisi.rana@gmail.com

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/AldisiRana/genrisk",
    "name": "GenRisk",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7.5",
    "maintainer_email": null,
    "keywords": "genetics, scoring, risk, comprehensive",
    "author": "Rana Aldisi",
    "author_email": "aldisi.rana@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c1/5a/da5214bbbcea3e56a1aa9e3e894588f073a206611be282c97732cd2b6b79/GenRisk-0.3.2.tar.gz",
    "platform": null,
    "description": "# GenRisk\n\nGenRisk is a package that implements different gene-based scoring schemes to analyze and find significant genes \nwithin a phenotype in a population\n\n## Citation\nRana Aldisi, Emadeldin Hassanin, Sugirthan Sivalingam, Andreas Buness, Hannah Klinkhammer, Andreas Mayr, Holger Fr\u00f6hlich, Peter Krawitz, Carlo Maj, GenRisk: a tool for comprehensive genetic risk modeling, Bioinformatics, Volume 38, Issue 9, 1 May 2022, Pages 2651\u20132653, https://doi.org/10.1093/bioinformatics/btac152\n\n## Requirements\n* plink >= 1.9 https://www.cog-genomics.org/plink/\n* R version >= 3.6.3\n\n## Installation\nOption 1: The latest release of ``GenRisk`` can be installed on python3+ with:\n\n    $ pip install genrisk\n\nOption2: you can also install the package with the latest updates directly from `GitHub <https://github.com/AldisiRana/GenRisk>`_ with:\n\n    $ pip install git+https://github.com/AldisiRana/GenRisk.git\n\n## Usage\n\n### Score genes\nThis command calculate the gene-based scores for a given dataset.\n\nIt requires plink binary files, and an annotations file that contains all information needed for the score computation.\n\n    $ genrisk score-genes -a ../toy_example/toy_annotations.tsv -b ../toy_example/toy_data.bim -o toy_genes_scores_test_mod.tsv -t toy_vcf_scoring -v SNP -f gnomadAF -g gene -l ALT -d CADD_raw \n\n* For further CLI options and parameters use --help\n\n### Calculate p-values\nThis function calculates the p-values across the genes between two given groups\n    \n    $ genrisk find-association -s toy_genes_scores.tsv -i info.pheno -t linear -c quan -a fdr_bh -v sex,age,bmi \n\n* For further CLI options and parameters use --help\n\n### Visualize\nVisualize manhatten plot and qqplot for the data.\n\n    $ genrisk visualize -p logit_assoc_binary.tsv -i genes_info_ref.txt --genescol-1 genes\n\n* For further CLI options and parameters use --help\n\n### Create model\nCreate a prediction model (classifier or regressor) with given dataset\n\n    $ genrisk create-model -d toy_dataset_feats.tsv -o quan_regression_model -n quan_regression_model --model-type regressor -l quan --normalize\n\n* For further CLI options and parameters use --help\n\n### Test model\nEvaluate a prediction model with a given dataset.\n\n    $ genrisk test-model --model-path regressor_model.pkl --input-file testing_dataset.tsv --model-type regressor \n    --labels-col target --samples-col IID\n* For further CLI options and parameters use --help\n\n### Get PRS scores\nThis command aquires a PGS file (provided by the user or downloaded from pgscatalog) then calculates the PRS scores for dataset.\nNote: This command is interactive.\n\n    $ genrisk get-prs\n* For further CLI options and parameters use --help\n\n### Get GBRS\nCalculate gene-based risk scores for individuals. \nIf users do not have weights for calculation, they can provide a file with the phenotype and weights will be calculated.\n\n    $genrisk get-gbrs --scores-file scores_file.tsv --weights-file weights_file.tsv --weights-col zscore --sum\n* For further CLI options and parameters use --help\n\n## Contact\nIf you have any questions or problems with the tool or its installation please feel free to create an issue in the repository or contact me via email:\naldisi.rana@gmail.com\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Comprehensive genetic risk assessment",
    "version": "0.3.2",
    "project_urls": {
        "Homepage": "https://github.com/AldisiRana/genrisk"
    },
    "split_keywords": [
        "genetics",
        " scoring",
        " risk",
        " comprehensive"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c1ebd6141bcebd6c4cd3763bc873fe2a27ccc9d3d9f635e874f95fff3373f53f",
                "md5": "2d4ab4c5ba37d26c35edc94ff30f3e24",
                "sha256": "d1b5353f45310872fce352b31a0a55aa62631f57e7a47fb5434d34884c8745b9"
            },
            "downloads": -1,
            "filename": "GenRisk-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2d4ab4c5ba37d26c35edc94ff30f3e24",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7.5",
            "size": 27303,
            "upload_time": "2024-08-27T07:55:27",
            "upload_time_iso_8601": "2024-08-27T07:55:27.545664Z",
            "url": "https://files.pythonhosted.org/packages/c1/eb/d6141bcebd6c4cd3763bc873fe2a27ccc9d3d9f635e874f95fff3373f53f/GenRisk-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c15ada5214bbbcea3e56a1aa9e3e894588f073a206611be282c97732cd2b6b79",
                "md5": "aa3e699224b3c584626bdd8ed95aa615",
                "sha256": "ac267389c22b0f12583a5e96e55abeec9e101b4fb0cabbccdf006c050bcd13ad"
            },
            "downloads": -1,
            "filename": "GenRisk-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "aa3e699224b3c584626bdd8ed95aa615",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7.5",
            "size": 41868317,
            "upload_time": "2024-08-27T07:55:33",
            "upload_time_iso_8601": "2024-08-27T07:55:33.587097Z",
            "url": "https://files.pythonhosted.org/packages/c1/5a/da5214bbbcea3e56a1aa9e3e894588f073a206611be282c97732cd2b6b79/GenRisk-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-27 07:55:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AldisiRana",
    "github_project": "genrisk",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "genrisk"
}
        
Elapsed time: 0.38437s