InterpreTS


NameInterpreTS JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/ruleminer/InterpreTS
SummaryFeature extraction from time series to support the creation of interpretable and explainable predictive models.
upload_time2024-11-06 22:41:36
maintainerNone
docs_urlNone
author['Łukasz Wróbel', 'Sławomir Put', 'Martyna Żur', 'Martyna Kramarz', 'Jarosław Strzelczyk', 'Weronika Wołowczyk', 'Piotr Krupiński']
requires_python>=3.8
licenseNone
keywords time series feature extraction interpretability explainability machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # InterpreTS

InterpreTS is a Python library designed for extracting meaningful and interpretable features from time series data to support the creation of interpretable and explainable predictive models.

## Overview
With the growing importance of interpretability in machine learning and AI, InterpreTS focuses on creating feature representations that facilitate the development of interpretable and explainable predictive models.

## Key Features
- **Statistical Features**: Extract basic statistics like mean, standard deviation, minimum, and maximum values.
- **Frequency Features**: Calculate features in the frequency domain, such as Fourier Transform coefficients.
- **Relational Features**: Generate features describing relationships between different time series, such as correlation.
- **Parallel Computing Support**: Efficiently compute features with parallel processing.
- **Data Format Flexibility**: Easily convert and process data in `pandas.DataFrame` or `numpy.array` formats.

## Requirements
- Python 3.8 or above
- `pandas`
- `numpy`
- `statsmodels`

## Installation Guide
Follow these steps to install InterpreTS and its dependencies:

1. **Clone the Repository**  
   Clone the InterpreTS repository to your local machine:
   
   ```bash
   git clone https://github.com/ruleminer/InterpreTS.git
   cd InterpreTS
   ```

2. Install dependencies: Install the required packages listed in the `requirements.txt` file:

    ```python
    pip install -r requirements.txt
    ```

3. Install InterpreTS: Run the following command to install InterpreTS:

    ```python
    pip install interpreTS
    ```


## Verifying Installation
Once installed, you can verify the installation by running a simple feature extraction example:

    ```python
    from interpreTS.core.feature_extractor import FeatureExtractor, Features
    import pandas as pd

    # Sample time series data
    data = pd.DataFrame({'value': [1, 2, 3, 4, 5]})
    extractor = FeatureExtractor(features=[Features.LENGTH, Features.MEAN, Features.VARIANCE])
    features = extractor.extract_features(data)
    print("Extracted Features:\n", features)
    ```

## Additional Usage Example with Time Series Data
You can also use InterpreTS with time-indexed data:

    ```python

    from interpreTS.core.time_series_data import TimeSeriesData
    from interpreTS.core.feature_extractor import FeatureExtractor, Features
    import pandas as pd

    # Time-indexed data
    data_with_date = pd.Series(
        [5, 3, 6, 2, 7, 4, 8, 3, 9, 1],
        index=pd.date_range("2023-01-01", periods=10, freq="D")
    )
    ts_data = TimeSeriesData(data_with_date)

    # Feature extraction
    extractor = FeatureExtractor(features=[Features.LENGTH, Features.MEAN, Features.VARIANCE])
    features = extractor.extract_features(ts_data.data)
    print("\nExtracted Features from Time Series Data:\n", features)
    ```

## Documentation

Complete documentation is available in the [docs folder](./docs).


## Issues and Support

For any issues, please consult our [Issue Tracker](https://github.com/ruleminer/InterpreTS/issues) on GitHub.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ruleminer/InterpreTS",
    "name": "InterpreTS",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "time series feature extraction interpretability explainability machine learning",
    "author": "['\u0141ukasz Wr\u00f3bel', 'S\u0142awomir Put', 'Martyna \u017bur', 'Martyna Kramarz', 'Jaros\u0142aw Strzelczyk', 'Weronika Wo\u0142owczyk', 'Piotr Krupi\u0144ski']",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/15/dc/a47560dc05442a056c7c0e9d3d3b301c6f42fbad313cef470f265514234c/interprets-0.1.0.tar.gz",
    "platform": null,
    "description": "# InterpreTS\r\n\r\nInterpreTS is a Python library designed for extracting meaningful and interpretable features from time series data to support the creation of interpretable and explainable predictive models.\r\n\r\n## Overview\r\nWith the growing importance of interpretability in machine learning and AI, InterpreTS focuses on creating feature representations that facilitate the development of interpretable and explainable predictive models.\r\n\r\n## Key Features\r\n- **Statistical Features**: Extract basic statistics like mean, standard deviation, minimum, and maximum values.\r\n- **Frequency Features**: Calculate features in the frequency domain, such as Fourier Transform coefficients.\r\n- **Relational Features**: Generate features describing relationships between different time series, such as correlation.\r\n- **Parallel Computing Support**: Efficiently compute features with parallel processing.\r\n- **Data Format Flexibility**: Easily convert and process data in `pandas.DataFrame` or `numpy.array` formats.\r\n\r\n## Requirements\r\n- Python 3.8 or above\r\n- `pandas`\r\n- `numpy`\r\n- `statsmodels`\r\n\r\n## Installation Guide\r\nFollow these steps to install InterpreTS and its dependencies:\r\n\r\n1. **Clone the Repository**  \r\n   Clone the InterpreTS repository to your local machine:\r\n   \r\n   ```bash\r\n   git clone https://github.com/ruleminer/InterpreTS.git\r\n   cd InterpreTS\r\n   ```\r\n\r\n2. Install dependencies: Install the required packages listed in the `requirements.txt` file:\r\n\r\n    ```python\r\n    pip install -r requirements.txt\r\n    ```\r\n\r\n3. Install InterpreTS: Run the following command to install InterpreTS:\r\n\r\n    ```python\r\n    pip install interpreTS\r\n    ```\r\n\r\n\r\n## Verifying Installation\r\nOnce installed, you can verify the installation by running a simple feature extraction example:\r\n\r\n    ```python\r\n    from interpreTS.core.feature_extractor import FeatureExtractor, Features\r\n    import pandas as pd\r\n\r\n    # Sample time series data\r\n    data = pd.DataFrame({'value': [1, 2, 3, 4, 5]})\r\n    extractor = FeatureExtractor(features=[Features.LENGTH, Features.MEAN, Features.VARIANCE])\r\n    features = extractor.extract_features(data)\r\n    print(\"Extracted Features:\\n\", features)\r\n    ```\r\n\r\n## Additional Usage Example with Time Series Data\r\nYou can also use InterpreTS with time-indexed data:\r\n\r\n    ```python\r\n\r\n    from interpreTS.core.time_series_data import TimeSeriesData\r\n    from interpreTS.core.feature_extractor import FeatureExtractor, Features\r\n    import pandas as pd\r\n\r\n    # Time-indexed data\r\n    data_with_date = pd.Series(\r\n        [5, 3, 6, 2, 7, 4, 8, 3, 9, 1],\r\n        index=pd.date_range(\"2023-01-01\", periods=10, freq=\"D\")\r\n    )\r\n    ts_data = TimeSeriesData(data_with_date)\r\n\r\n    # Feature extraction\r\n    extractor = FeatureExtractor(features=[Features.LENGTH, Features.MEAN, Features.VARIANCE])\r\n    features = extractor.extract_features(ts_data.data)\r\n    print(\"\\nExtracted Features from Time Series Data:\\n\", features)\r\n    ```\r\n\r\n## Documentation\r\n\r\nComplete documentation is available in the [docs folder](./docs).\r\n\r\n\r\n## Issues and Support\r\n\r\nFor any issues, please consult our [Issue Tracker](https://github.com/ruleminer/InterpreTS/issues) on GitHub.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Feature extraction from time series to support the creation of interpretable and explainable predictive models.",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://github.com/ruleminer/InterpreTS/docs",
        "Homepage": "https://github.com/ruleminer/InterpreTS",
        "Source": "https://github.com/ruleminer/InterpreTS",
        "Tracker": "https://github.com/ruleminer/InterpreTS/issues"
    },
    "split_keywords": [
        "time",
        "series",
        "feature",
        "extraction",
        "interpretability",
        "explainability",
        "machine",
        "learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "948c26130971a62f49b8bc970c797e792fe9b64716e0532fadf5da4f31342f77",
                "md5": "d3b6b36dac5f63813effe55f9fae5f98",
                "sha256": "9071553a89a8e0474400abbcdb332213df56973635fd198bb771471892adcd0f"
            },
            "downloads": -1,
            "filename": "InterpreTS-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d3b6b36dac5f63813effe55f9fae5f98",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 26830,
            "upload_time": "2024-11-06T22:41:34",
            "upload_time_iso_8601": "2024-11-06T22:41:34.593297Z",
            "url": "https://files.pythonhosted.org/packages/94/8c/26130971a62f49b8bc970c797e792fe9b64716e0532fadf5da4f31342f77/InterpreTS-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "15dca47560dc05442a056c7c0e9d3d3b301c6f42fbad313cef470f265514234c",
                "md5": "f054db4ca82aac75dce805321260a911",
                "sha256": "17a999d015e2d0b6ee9ac989937c63d8b78ad3f185ef4321e8f5535b029b8247"
            },
            "downloads": -1,
            "filename": "interprets-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f054db4ca82aac75dce805321260a911",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 14504,
            "upload_time": "2024-11-06T22:41:36",
            "upload_time_iso_8601": "2024-11-06T22:41:36.429613Z",
            "url": "https://files.pythonhosted.org/packages/15/dc/a47560dc05442a056c7c0e9d3d3b301c6f42fbad313cef470f265514234c/interprets-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-06 22:41:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ruleminer",
    "github_project": "InterpreTS",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "interprets"
}
        
Elapsed time: 0.44647s