NREL-farms


NameNREL-farms JSON
Version 1.0.6 PyPI version JSON
download
home_pagehttps://github.com/NREL/farms
SummaryThe Fast All-sky Radiation Model for Solar applications (FARMS)
upload_time2024-07-05 04:39:54
maintainerNone
docs_urlNone
authorGrant Buster
requires_python>=3.7
licenseBSD 3-Clause
keywords farms
VCS
bugtrack_url
requirements numpy pandas
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ***************************************************************************
Welcome to the Fast All-sky Radiation Model for Solar applications (FARMS)!
***************************************************************************

.. image:: https://github.com/NREL/farms/workflows/Documentation/badge.svg
    :target: https://nrel.github.io/farms/

.. image:: https://github.com/NREL/farms/workflows/Pytests/badge.svg
    :target: https://github.com/NREL/farms/actions?query=workflow%3A%22Pytests%22

.. image:: https://github.com/NREL/farms/workflows/Lint%20Code%20Base/badge.svg
    :target: https://github.com/NREL/farms/actions?query=workflow%3A%22Lint+Code+Base%22

.. image:: https://img.shields.io/pypi/pyversions/NREL-farms.svg
    :target: https://pypi.org/project/NREL-farms/

.. image:: https://badge.fury.io/py/NREL-farms.svg
    :target: https://badge.fury.io/py/NREL-farms

.. image:: https://anaconda.org/nrel/nrel-farms/badges/version.svg
    :target: https://anaconda.org/nrel/nrel-farms

.. image:: https://anaconda.org/nrel/nrel-farms/badges/license.svg
    :target: https://anaconda.org/nrel/nrel-farms

.. image:: https://codecov.io/gh/nrel/farms/branch/master/graph/badge.svg?token=WQ95L11SRS
    :target: https://codecov.io/gh/nrel/farms


The Fast All-sky Radiation Model for Solar applications (FARMS) is used to
compute cloudy irradiance.

.. inclusion-intro

Installing farms
================

Option 1: Install from PIP or Conda (recommended for analysts):
---------------------------------------------------------------

1. Create a new environment:
    ``conda create --name farms``

2. Activate directory:
    ``conda activate farms``

3. Install farms:
    1) ``pip install NREL-farms`` or
    2) ``conda install nrel-farms --channel=nrel``

Option 2: Clone repo (recommended for developers)
-------------------------------------------------

1. from home dir, ``git clone https://github.com/NREL/farms.git``
    1) enter github username
    2) enter github password

2. Create ``farms`` environment and install package
    1) Create a conda env: ``conda create -n farms``
    2) Run the command: ``conda activate farms``
    3) cd into the repo cloned in 1.
    4) prior to running ``pip`` below, make sure the branch is correct (install
       from master!)
    5) Install ``farms`` and its dependencies by running:
       ``pip install .`` (or ``pip install -e .`` if running a dev branch
       or working on the source code)

Recommended Citation
====================

Yu Xie, Manajit Sengupta, Jimy Dudhia, "A Fast All-sky Radiation Model
for Solar applications (FARMS): Algorithm and performance evaluation",
Solar Energy, Volume 135, 2016, Pages 435-445, ISSN 0038-092X,
https://doi.org/10.1016/j.solener.2016.06.003.
`Science Direct Link. <http://www.sciencedirect.com/science/article/pii/S0038092X16301827>`_


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/NREL/farms",
    "name": "NREL-farms",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "farms",
    "author": "Grant Buster",
    "author_email": "grant.buster@nrel.gov",
    "download_url": "https://files.pythonhosted.org/packages/2b/f9/b3d0a68ee00cae0836476389f51dee333d701f12702d7252feee3c2a1809/NREL-farms-1.0.6.tar.gz",
    "platform": null,
    "description": "***************************************************************************\nWelcome to the Fast All-sky Radiation Model for Solar applications (FARMS)!\n***************************************************************************\n\n.. image:: https://github.com/NREL/farms/workflows/Documentation/badge.svg\n    :target: https://nrel.github.io/farms/\n\n.. image:: https://github.com/NREL/farms/workflows/Pytests/badge.svg\n    :target: https://github.com/NREL/farms/actions?query=workflow%3A%22Pytests%22\n\n.. image:: https://github.com/NREL/farms/workflows/Lint%20Code%20Base/badge.svg\n    :target: https://github.com/NREL/farms/actions?query=workflow%3A%22Lint+Code+Base%22\n\n.. image:: https://img.shields.io/pypi/pyversions/NREL-farms.svg\n    :target: https://pypi.org/project/NREL-farms/\n\n.. image:: https://badge.fury.io/py/NREL-farms.svg\n    :target: https://badge.fury.io/py/NREL-farms\n\n.. image:: https://anaconda.org/nrel/nrel-farms/badges/version.svg\n    :target: https://anaconda.org/nrel/nrel-farms\n\n.. image:: https://anaconda.org/nrel/nrel-farms/badges/license.svg\n    :target: https://anaconda.org/nrel/nrel-farms\n\n.. image:: https://codecov.io/gh/nrel/farms/branch/master/graph/badge.svg?token=WQ95L11SRS\n    :target: https://codecov.io/gh/nrel/farms\n\n\nThe Fast All-sky Radiation Model for Solar applications (FARMS) is used to\ncompute cloudy irradiance.\n\n.. inclusion-intro\n\nInstalling farms\n================\n\nOption 1: Install from PIP or Conda (recommended for analysts):\n---------------------------------------------------------------\n\n1. Create a new environment:\n    ``conda create --name farms``\n\n2. Activate directory:\n    ``conda activate farms``\n\n3. Install farms:\n    1) ``pip install NREL-farms`` or\n    2) ``conda install nrel-farms --channel=nrel``\n\nOption 2: Clone repo (recommended for developers)\n-------------------------------------------------\n\n1. from home dir, ``git clone https://github.com/NREL/farms.git``\n    1) enter github username\n    2) enter github password\n\n2. Create ``farms`` environment and install package\n    1) Create a conda env: ``conda create -n farms``\n    2) Run the command: ``conda activate farms``\n    3) cd into the repo cloned in 1.\n    4) prior to running ``pip`` below, make sure the branch is correct (install\n       from master!)\n    5) Install ``farms`` and its dependencies by running:\n       ``pip install .`` (or ``pip install -e .`` if running a dev branch\n       or working on the source code)\n\nRecommended Citation\n====================\n\nYu Xie, Manajit Sengupta, Jimy Dudhia, \"A Fast All-sky Radiation Model\nfor Solar applications (FARMS): Algorithm and performance evaluation\",\nSolar Energy, Volume 135, 2016, Pages 435-445, ISSN 0038-092X,\nhttps://doi.org/10.1016/j.solener.2016.06.003.\n`Science Direct Link. <http://www.sciencedirect.com/science/article/pii/S0038092X16301827>`_\n\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause",
    "summary": "The Fast All-sky Radiation Model for Solar applications (FARMS)",
    "version": "1.0.6",
    "project_urls": {
        "Homepage": "https://github.com/NREL/farms"
    },
    "split_keywords": [
        "farms"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f0f7f9adda21ca026844d1630e6201977bbba9323cda5178b3ca3cb8ecefec63",
                "md5": "3d953f292a109a792aaf76f1ea9b8b4d",
                "sha256": "92322e1edd13bf22a2ea621982e0bfec6ba2e8ce2734c74b72d768a45c1ccff5"
            },
            "downloads": -1,
            "filename": "NREL_farms-1.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3d953f292a109a792aaf76f1ea9b8b4d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 20470,
            "upload_time": "2024-07-05T04:39:53",
            "upload_time_iso_8601": "2024-07-05T04:39:53.431393Z",
            "url": "https://files.pythonhosted.org/packages/f0/f7/f9adda21ca026844d1630e6201977bbba9323cda5178b3ca3cb8ecefec63/NREL_farms-1.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2bf9b3d0a68ee00cae0836476389f51dee333d701f12702d7252feee3c2a1809",
                "md5": "2d275a25794c5dcdb7fd39f65aea38de",
                "sha256": "ee9470a7d9196e69ebd4c6022a61576ab19ab9722366d1cccb40590ce3c1e884"
            },
            "downloads": -1,
            "filename": "NREL-farms-1.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "2d275a25794c5dcdb7fd39f65aea38de",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 16658,
            "upload_time": "2024-07-05T04:39:54",
            "upload_time_iso_8601": "2024-07-05T04:39:54.533289Z",
            "url": "https://files.pythonhosted.org/packages/2b/f9/b3d0a68ee00cae0836476389f51dee333d701f12702d7252feee3c2a1809/NREL-farms-1.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-05 04:39:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NREL",
    "github_project": "farms",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.17"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "0.25"
                ]
            ]
        }
    ],
    "lcname": "nrel-farms"
}
        
Elapsed time: 0.30177s