PREDICT


NamePREDICT JSON
Version 3.2.0 PyPI version JSON
download
home_pageNone
SummaryPredict: a Radiomics Extensive Digital Interchangable Classification Toolkit.
upload_time2025-07-28 11:31:33
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseNone
keywords bioinformatics radiomics features
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            PREDICT v3.2.0
==============

PREDICT: a Radiomics Extensive Digital Interchangable Classification Toolkit
----------------------------------------------------------------------------

This is an open-source python package supporting radiomics image feature extraction.

Documentation
~~~~~~~~~~~~~

For more information, see the sphinx generated documentation available in the docs folder. PREDICT is mostly used through `the WORC toolbox <https://github.com/MStarmans91/WORC>`__, in which further documentation on the features computed is also available, see https://worc.readthedocs.io/en/latest/static/features.html.

Alternatively, you can generate the documentation by checking out the master branch and running from the root directory:

.. code:: python

   python setup.py build_sphinx

The documentation can then be viewed in a browser by opening ``PACKAGE_ROOT\build\sphinx\html\index.html``.

Installation
~~~~~~~~~~~~

PREDICT has currently been tested on Ubuntu 24.04, and Windows 10 using Python 3.11.5 and higher.

The package can be installed through pip :

.. code:: python

   pip install PREDICT

Alternatively, you can use the provided setup.py file:

.. code:: python

   python setup.py install

Make sure you first install the required packages:

.. code:: python

   pip install -r requirements.txt

Configuration and usage
~~~~~~~~~~~~~~~~~~~~~~~

We recommend using PREDICT through `the WORC toolbox <https://github.com/MStarmans91/WORC>`__, as WORC provides easy execution, good default configurations, and additional functionality such as preprocessing. If you want to use PREDICT as standalone package, we have included the default config for PREDICT from WORC in the ``tests`` folder. The main function of PREDICT is the ``PREDICT.CalcFeatures.CalcFeatures`` function, see tests.py in the test folder on the usage.

3rd-party packages used in PREDICT:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We mainly rely on the following packages:

- SimpleITK (Image loading and preprocessing)
- numpy (Feature computation)
- scikit-image
- pandas (Storage)
- PyRadiomics
- pydicom

See also the `requirements file <requirements.txt>`__.

License
~~~~~~~

This package is covered by the open source `APACHE 2.0 License <APACHE-LICENSE-2.0>`__. When using PREDICT, please cite the following DOI: |DOI|.

Contact
~~~~~~~

We are happy to help you with any questions: please send us a message or create an issue on Github.

.. |DOI| image:: https://zenodo.org/badge/doi/10.5281/zenodo.3854839.svg
   :target: https://zenodo.org/badge/latestdoi/92298822

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "PREDICT",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "bioinformatics, radiomics, features",
    "author": null,
    "author_email": "\"Martijn P. A. Starmans\" <m.starmans@erasmusmc.nl>, \"Sebastian R. van der Voort\" <s.vandervoort@erasmusmc.nl>",
    "download_url": "https://files.pythonhosted.org/packages/f0/ed/44131fe13772a3a8cd2e0c9011cee34babef070cb45c434d845be6e94020/predict-3.2.0.tar.gz",
    "platform": null,
    "description": "PREDICT v3.2.0\r\n==============\r\n\r\nPREDICT: a Radiomics Extensive Digital Interchangable Classification Toolkit\r\n----------------------------------------------------------------------------\r\n\r\nThis is an open-source python package supporting radiomics image feature extraction.\r\n\r\nDocumentation\r\n~~~~~~~~~~~~~\r\n\r\nFor more information, see the sphinx generated documentation available in the docs folder. PREDICT is mostly used through `the WORC toolbox <https://github.com/MStarmans91/WORC>`__, in which further documentation on the features computed is also available, see https://worc.readthedocs.io/en/latest/static/features.html.\r\n\r\nAlternatively, you can generate the documentation by checking out the master branch and running from the root directory:\r\n\r\n.. code:: python\r\n\r\n   python setup.py build_sphinx\r\n\r\nThe documentation can then be viewed in a browser by opening ``PACKAGE_ROOT\\build\\sphinx\\html\\index.html``.\r\n\r\nInstallation\r\n~~~~~~~~~~~~\r\n\r\nPREDICT has currently been tested on Ubuntu 24.04, and Windows 10 using Python 3.11.5 and higher.\r\n\r\nThe package can be installed through pip :\r\n\r\n.. code:: python\r\n\r\n   pip install PREDICT\r\n\r\nAlternatively, you can use the provided setup.py file:\r\n\r\n.. code:: python\r\n\r\n   python setup.py install\r\n\r\nMake sure you first install the required packages:\r\n\r\n.. code:: python\r\n\r\n   pip install -r requirements.txt\r\n\r\nConfiguration and usage\r\n~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\nWe recommend using PREDICT through `the WORC toolbox <https://github.com/MStarmans91/WORC>`__, as WORC provides easy execution, good default configurations, and additional functionality such as preprocessing. If you want to use PREDICT as standalone package, we have included the default config for PREDICT from WORC in the ``tests`` folder. The main function of PREDICT is the ``PREDICT.CalcFeatures.CalcFeatures`` function, see tests.py in the test folder on the usage.\r\n\r\n3rd-party packages used in PREDICT:\r\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\nWe mainly rely on the following packages:\r\n\r\n- SimpleITK (Image loading and preprocessing)\r\n- numpy (Feature computation)\r\n- scikit-image\r\n- pandas (Storage)\r\n- PyRadiomics\r\n- pydicom\r\n\r\nSee also the `requirements file <requirements.txt>`__.\r\n\r\nLicense\r\n~~~~~~~\r\n\r\nThis package is covered by the open source `APACHE 2.0 License <APACHE-LICENSE-2.0>`__. When using PREDICT, please cite the following DOI: |DOI|.\r\n\r\nContact\r\n~~~~~~~\r\n\r\nWe are happy to help you with any questions: please send us a message or create an issue on Github.\r\n\r\n.. |DOI| image:: https://zenodo.org/badge/doi/10.5281/zenodo.3854839.svg\r\n   :target: https://zenodo.org/badge/latestdoi/92298822\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Predict: a Radiomics Extensive Digital Interchangable Classification Toolkit.",
    "version": "3.2.0",
    "project_urls": {
        "Homepage": "https://github.com/Svdvoort/PREDICTFastr"
    },
    "split_keywords": [
        "bioinformatics",
        " radiomics",
        " features"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "001b2b27ea96eba8b4a1abbd434978388729b9d866932ff17c007b06d295c996",
                "md5": "6b8875d16ace6a973857487ac59a8a07",
                "sha256": "aa03f5f02efa1497867f42905f7edaa2ffde48296c6db75e346dfae9f65159c2"
            },
            "downloads": -1,
            "filename": "predict-3.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6b8875d16ace6a973857487ac59a8a07",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 102100,
            "upload_time": "2025-07-28T11:31:32",
            "upload_time_iso_8601": "2025-07-28T11:31:32.310699Z",
            "url": "https://files.pythonhosted.org/packages/00/1b/2b27ea96eba8b4a1abbd434978388729b9d866932ff17c007b06d295c996/predict-3.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f0ed44131fe13772a3a8cd2e0c9011cee34babef070cb45c434d845be6e94020",
                "md5": "171cb539c2eea243667a787c5e6f84e7",
                "sha256": "dd2480cc721fe0569491efba3d86b9b89487638de9e532a1b368469e2e8cc31c"
            },
            "downloads": -1,
            "filename": "predict-3.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "171cb539c2eea243667a787c5e6f84e7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 77258,
            "upload_time": "2025-07-28T11:31:33",
            "upload_time_iso_8601": "2025-07-28T11:31:33.368633Z",
            "url": "https://files.pythonhosted.org/packages/f0/ed/44131fe13772a3a8cd2e0c9011cee34babef070cb45c434d845be6e94020/predict-3.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-28 11:31:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Svdvoort",
    "github_project": "PREDICTFastr",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "lcname": "predict"
}
        
Elapsed time: 2.00302s