Name | PREDICT JSON |
Version |
3.2.0
JSON |
| download |
home_page | None |
Summary | Predict: a Radiomics Extensive Digital Interchangable Classification Toolkit. |
upload_time | 2025-07-28 11:31:33 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.11 |
license | None |
keywords |
bioinformatics
radiomics
features
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
|
coveralls test coverage |
No coveralls.
|
PREDICT v3.2.0
==============
PREDICT: a Radiomics Extensive Digital Interchangable Classification Toolkit
----------------------------------------------------------------------------
This is an open-source python package supporting radiomics image feature extraction.
Documentation
~~~~~~~~~~~~~
For more information, see the sphinx generated documentation available in the docs folder. PREDICT is mostly used through `the WORC toolbox <https://github.com/MStarmans91/WORC>`__, in which further documentation on the features computed is also available, see https://worc.readthedocs.io/en/latest/static/features.html.
Alternatively, you can generate the documentation by checking out the master branch and running from the root directory:
.. code:: python
python setup.py build_sphinx
The documentation can then be viewed in a browser by opening ``PACKAGE_ROOT\build\sphinx\html\index.html``.
Installation
~~~~~~~~~~~~
PREDICT has currently been tested on Ubuntu 24.04, and Windows 10 using Python 3.11.5 and higher.
The package can be installed through pip :
.. code:: python
pip install PREDICT
Alternatively, you can use the provided setup.py file:
.. code:: python
python setup.py install
Make sure you first install the required packages:
.. code:: python
pip install -r requirements.txt
Configuration and usage
~~~~~~~~~~~~~~~~~~~~~~~
We recommend using PREDICT through `the WORC toolbox <https://github.com/MStarmans91/WORC>`__, as WORC provides easy execution, good default configurations, and additional functionality such as preprocessing. If you want to use PREDICT as standalone package, we have included the default config for PREDICT from WORC in the ``tests`` folder. The main function of PREDICT is the ``PREDICT.CalcFeatures.CalcFeatures`` function, see tests.py in the test folder on the usage.
3rd-party packages used in PREDICT:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We mainly rely on the following packages:
- SimpleITK (Image loading and preprocessing)
- numpy (Feature computation)
- scikit-image
- pandas (Storage)
- PyRadiomics
- pydicom
See also the `requirements file <requirements.txt>`__.
License
~~~~~~~
This package is covered by the open source `APACHE 2.0 License <APACHE-LICENSE-2.0>`__. When using PREDICT, please cite the following DOI: |DOI|.
Contact
~~~~~~~
We are happy to help you with any questions: please send us a message or create an issue on Github.
.. |DOI| image:: https://zenodo.org/badge/doi/10.5281/zenodo.3854839.svg
:target: https://zenodo.org/badge/latestdoi/92298822
Raw data
{
"_id": null,
"home_page": null,
"name": "PREDICT",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "bioinformatics, radiomics, features",
"author": null,
"author_email": "\"Martijn P. A. Starmans\" <m.starmans@erasmusmc.nl>, \"Sebastian R. van der Voort\" <s.vandervoort@erasmusmc.nl>",
"download_url": "https://files.pythonhosted.org/packages/f0/ed/44131fe13772a3a8cd2e0c9011cee34babef070cb45c434d845be6e94020/predict-3.2.0.tar.gz",
"platform": null,
"description": "PREDICT v3.2.0\r\n==============\r\n\r\nPREDICT: a Radiomics Extensive Digital Interchangable Classification Toolkit\r\n----------------------------------------------------------------------------\r\n\r\nThis is an open-source python package supporting radiomics image feature extraction.\r\n\r\nDocumentation\r\n~~~~~~~~~~~~~\r\n\r\nFor more information, see the sphinx generated documentation available in the docs folder. PREDICT is mostly used through `the WORC toolbox <https://github.com/MStarmans91/WORC>`__, in which further documentation on the features computed is also available, see https://worc.readthedocs.io/en/latest/static/features.html.\r\n\r\nAlternatively, you can generate the documentation by checking out the master branch and running from the root directory:\r\n\r\n.. code:: python\r\n\r\n python setup.py build_sphinx\r\n\r\nThe documentation can then be viewed in a browser by opening ``PACKAGE_ROOT\\build\\sphinx\\html\\index.html``.\r\n\r\nInstallation\r\n~~~~~~~~~~~~\r\n\r\nPREDICT has currently been tested on Ubuntu 24.04, and Windows 10 using Python 3.11.5 and higher.\r\n\r\nThe package can be installed through pip :\r\n\r\n.. code:: python\r\n\r\n pip install PREDICT\r\n\r\nAlternatively, you can use the provided setup.py file:\r\n\r\n.. code:: python\r\n\r\n python setup.py install\r\n\r\nMake sure you first install the required packages:\r\n\r\n.. code:: python\r\n\r\n pip install -r requirements.txt\r\n\r\nConfiguration and usage\r\n~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\nWe recommend using PREDICT through `the WORC toolbox <https://github.com/MStarmans91/WORC>`__, as WORC provides easy execution, good default configurations, and additional functionality such as preprocessing. If you want to use PREDICT as standalone package, we have included the default config for PREDICT from WORC in the ``tests`` folder. The main function of PREDICT is the ``PREDICT.CalcFeatures.CalcFeatures`` function, see tests.py in the test folder on the usage.\r\n\r\n3rd-party packages used in PREDICT:\r\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\nWe mainly rely on the following packages:\r\n\r\n- SimpleITK (Image loading and preprocessing)\r\n- numpy (Feature computation)\r\n- scikit-image\r\n- pandas (Storage)\r\n- PyRadiomics\r\n- pydicom\r\n\r\nSee also the `requirements file <requirements.txt>`__.\r\n\r\nLicense\r\n~~~~~~~\r\n\r\nThis package is covered by the open source `APACHE 2.0 License <APACHE-LICENSE-2.0>`__. When using PREDICT, please cite the following DOI: |DOI|.\r\n\r\nContact\r\n~~~~~~~\r\n\r\nWe are happy to help you with any questions: please send us a message or create an issue on Github.\r\n\r\n.. |DOI| image:: https://zenodo.org/badge/doi/10.5281/zenodo.3854839.svg\r\n :target: https://zenodo.org/badge/latestdoi/92298822\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Predict: a Radiomics Extensive Digital Interchangable Classification Toolkit.",
"version": "3.2.0",
"project_urls": {
"Homepage": "https://github.com/Svdvoort/PREDICTFastr"
},
"split_keywords": [
"bioinformatics",
" radiomics",
" features"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "001b2b27ea96eba8b4a1abbd434978388729b9d866932ff17c007b06d295c996",
"md5": "6b8875d16ace6a973857487ac59a8a07",
"sha256": "aa03f5f02efa1497867f42905f7edaa2ffde48296c6db75e346dfae9f65159c2"
},
"downloads": -1,
"filename": "predict-3.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6b8875d16ace6a973857487ac59a8a07",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 102100,
"upload_time": "2025-07-28T11:31:32",
"upload_time_iso_8601": "2025-07-28T11:31:32.310699Z",
"url": "https://files.pythonhosted.org/packages/00/1b/2b27ea96eba8b4a1abbd434978388729b9d866932ff17c007b06d295c996/predict-3.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f0ed44131fe13772a3a8cd2e0c9011cee34babef070cb45c434d845be6e94020",
"md5": "171cb539c2eea243667a787c5e6f84e7",
"sha256": "dd2480cc721fe0569491efba3d86b9b89487638de9e532a1b368469e2e8cc31c"
},
"downloads": -1,
"filename": "predict-3.2.0.tar.gz",
"has_sig": false,
"md5_digest": "171cb539c2eea243667a787c5e6f84e7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 77258,
"upload_time": "2025-07-28T11:31:33",
"upload_time_iso_8601": "2025-07-28T11:31:33.368633Z",
"url": "https://files.pythonhosted.org/packages/f0/ed/44131fe13772a3a8cd2e0c9011cee34babef070cb45c434d845be6e94020/predict-3.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-28 11:31:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Svdvoort",
"github_project": "PREDICTFastr",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"lcname": "predict"
}