## ProtFlash: A lightweight protein language model
[![PyPI - Version](https://img.shields.io/pypi/v/ProtFlash.svg?style=flat)](https://pypi.org/project/ProtFlash/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ProtFlash.svg)](https://pypi.org/project/ProtFlash/) [![GitHub - LICENSE](https://img.shields.io/github/license/isyslab-hust/ProtFlash.svg?style=flat)](./LICENSE) ![PyPI - Downloads](https://img.shields.io/pypi/dm/ProtFlash) [![Wheel](https://img.shields.io/pypi/wheel/ProtFlash)](https://pypi.org/project/ProtFlash/) ![build](https://img.shields.io/github/actions/workflow/status/isyslab-hust/ProtFlash/publish_to_pypi.yml)
### Install
As a prerequisite, you must have PyTorch installed to use this repository.
You can use this one-liner for installation, using the latest release version
```
# latest version
pip install git+https://github.com/isyslab-hust/ProtFlash
# stable version
pip install ProtFlash
```
## **Model details**
| **Model** | **# of parameters** | **# of hidden size** | **Pretraining dataset** | **# of proteins** | **Model download** |
|:--------------:|:-------------------:|:----------------------:|:----------------------------------------------:|:-----------------:|:------------------------:|
| ProtFlash-base | 174M | 768 | [UniRef100](https://www.uniprot.org/downloads) | 51M | [ProtFlash-base](https://zenodo.org/record/7655858/files/protflash_large.pt) |
| ProtFlash-small | 79M | 512 | [UniRef50](https://www.uniprot.org/downloads) | 51M | [ProtFlash-small](https://zenodo.org/record/7655858/files/flash_protein.pt) |
### Usage
#### protein sequence embedding
```
from ProtFlash.pretrain import load_prot_flash_base
from ProtFlash.utils import batchConverter
data = [
("protein1", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLAGG"),
("protein2", "KALTARQQEVFDLIRDHISQTGMPPTRAEIAQRLGFRSPNAAEEHLKALARKGVIEIVSGASRGIRLLQEE"),
]
ids, batch_token, lengths = batchConverter(data)
model = load_prot_flash_base()
with torch.no_grad():
token_embedding = model(batch_token, lengths)
# Generate per-sequence representations via averaging
sequence_representations = []
for i, (_, seq) in enumerate(data):
sequence_representations.append(token_embedding[i, 0: len(seq) + 1].mean(0))
```
#### loading weight files
```
import torch
from ProtFlash.model import FLASHTransformer
model_data = torch.load(your_parameters_file)
hyper_parameter = model_data["hyper_parameters"]
model = FLASHTransformer(hyper_parameter['dim'], hyper_parameter['num_tokens'], hyper_parameter ['num_layers'], group_size=hyper_parameter['num_tokens'],
query_key_dim=hyper_parameter['qk_dim'], max_rel_dist=hyper_parameter['max_rel_dist'], expansion_factor=hyper_parameter['expansion_factor'])
model.load_state_dict(model_data['state_dict'])
```
### License
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
### Citation
If you use this code or one of our pretrained models for your publication, please cite our paper:
```
Lei Wang, Hui Zhang, Wei Xu, Zhidong Xue, and Yan Wang. ProtFlash: Deciphering the protein landscape with a novel and lightweight language model, Under revision (2023)
```
Raw data
{
"_id": null,
"home_page": "http://github.com/isyslab-hust/ProtFlash",
"name": "ProtFlash",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "protein language model",
"author": "Lei Wang",
"author_email": "wanglei94@hust.edu.cn",
"download_url": "https://files.pythonhosted.org/packages/8e/f1/d7cbe20c911dea4e93b6711af96775458e1b18fe94fbf5f7632392927c5d/ProtFlash-0.1.1.tar.gz",
"platform": null,
"description": "## ProtFlash: A lightweight protein language model\n[![PyPI - Version](https://img.shields.io/pypi/v/ProtFlash.svg?style=flat)](https://pypi.org/project/ProtFlash/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ProtFlash.svg)](https://pypi.org/project/ProtFlash/) [![GitHub - LICENSE](https://img.shields.io/github/license/isyslab-hust/ProtFlash.svg?style=flat)](./LICENSE) ![PyPI - Downloads](https://img.shields.io/pypi/dm/ProtFlash) [![Wheel](https://img.shields.io/pypi/wheel/ProtFlash)](https://pypi.org/project/ProtFlash/) ![build](https://img.shields.io/github/actions/workflow/status/isyslab-hust/ProtFlash/publish_to_pypi.yml)\n\n### Install \nAs a prerequisite, you must have PyTorch installed to use this repository.\n\nYou can use this one-liner for installation, using the latest release version\n```\n# latest version\npip install git+https://github.com/isyslab-hust/ProtFlash\n\n# stable version\npip install ProtFlash\n```\n\n## **Model details**\n| **Model** | **# of parameters** | **# of hidden size** | **Pretraining dataset** | **# of proteins** | **Model download** |\n|:--------------:|:-------------------:|:----------------------:|:----------------------------------------------:|:-----------------:|:------------------------:|\n| ProtFlash-base | 174M | 768 | [UniRef100](https://www.uniprot.org/downloads) | 51M | [ProtFlash-base](https://zenodo.org/record/7655858/files/protflash_large.pt) |\n| ProtFlash-small | 79M | 512 | [UniRef50](https://www.uniprot.org/downloads) | 51M | [ProtFlash-small](https://zenodo.org/record/7655858/files/flash_protein.pt) |\n\n### Usage\n\n#### protein sequence embedding\n```\nfrom ProtFlash.pretrain import load_prot_flash_base\nfrom ProtFlash.utils import batchConverter\ndata = [\n (\"protein1\", \"MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLAGG\"),\n (\"protein2\", \"KALTARQQEVFDLIRDHISQTGMPPTRAEIAQRLGFRSPNAAEEHLKALARKGVIEIVSGASRGIRLLQEE\"),\n]\nids, batch_token, lengths = batchConverter(data)\nmodel = load_prot_flash_base()\nwith torch.no_grad():\n token_embedding = model(batch_token, lengths)\n# Generate per-sequence representations via averaging\nsequence_representations = []\nfor i, (_, seq) in enumerate(data):\n sequence_representations.append(token_embedding[i, 0: len(seq) + 1].mean(0))\n```\n\n#### loading weight files\n```\nimport torch\nfrom ProtFlash.model import FLASHTransformer\n\nmodel_data = torch.load(your_parameters_file)\nhyper_parameter = model_data[\"hyper_parameters\"]\nmodel = FLASHTransformer(hyper_parameter['dim'], hyper_parameter['num_tokens'], hyper_parameter ['num_layers'], group_size=hyper_parameter['num_tokens'],\n query_key_dim=hyper_parameter['qk_dim'], max_rel_dist=hyper_parameter['max_rel_dist'], expansion_factor=hyper_parameter['expansion_factor'])\n\nmodel.load_state_dict(model_data['state_dict'])\n```\n\n### License\nThis source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.\n\n### Citation\nIf you use this code or one of our pretrained models for your publication, please cite our paper:\n```\nLei Wang, Hui Zhang, Wei Xu, Zhidong Xue, and Yan Wang. ProtFlash: Deciphering the protein landscape with a novel and lightweight language model, Under revision (2023)\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "protein language model",
"version": "0.1.1",
"project_urls": {
"Homepage": "http://github.com/isyslab-hust/ProtFlash"
},
"split_keywords": [
"protein",
"language",
"model"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c5aad637a378b05fcfec846fb265fa87ceb9aa4edfed7f62cbe8261fe7d1e71e",
"md5": "2d43095e9233fbe0111b4c25208bea41",
"sha256": "6dbcf564e0962c6310ef572f2b5902698e570a73c12d457491fb73d95b6bfe49"
},
"downloads": -1,
"filename": "ProtFlash-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2d43095e9233fbe0111b4c25208bea41",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 7397,
"upload_time": "2023-07-03T13:35:54",
"upload_time_iso_8601": "2023-07-03T13:35:54.282590Z",
"url": "https://files.pythonhosted.org/packages/c5/aa/d637a378b05fcfec846fb265fa87ceb9aa4edfed7f62cbe8261fe7d1e71e/ProtFlash-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8ef1d7cbe20c911dea4e93b6711af96775458e1b18fe94fbf5f7632392927c5d",
"md5": "2cb9eed190b9a3dfaca9cea9d2fd7356",
"sha256": "de8eb7ab3ceae2858ad6e6ee6746b8be94b235c0f59fa81674e3fd1d68317d22"
},
"downloads": -1,
"filename": "ProtFlash-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "2cb9eed190b9a3dfaca9cea9d2fd7356",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 6550,
"upload_time": "2023-07-03T13:35:55",
"upload_time_iso_8601": "2023-07-03T13:35:55.300963Z",
"url": "https://files.pythonhosted.org/packages/8e/f1/d7cbe20c911dea4e93b6711af96775458e1b18fe94fbf5f7632392927c5d/ProtFlash-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-03 13:35:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "isyslab-hust",
"github_project": "ProtFlash",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "protflash"
}