ProxTorch


NameProxTorch JSON
Version 0.0.9 PyPI version JSON
download
home_pagehttps://github.com/jameschapman19/proxtorch
SummaryProxTorch is a PyTorch library for proximal operators.
upload_time2023-09-05 20:51:11
maintainer
docs_urlNone
authorjameschapman
requires_python>=3.8,<4.0.0
licenseMIT
keywords proximal optimisation pytorch proximal operators
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">

<img src="docs/source/proxtorch-logo.jpg" alt="ProxTorch Logo" width="200"/>

# ProxTorch

**Unleashing Proximal Gradient Descent on PyTorch** πŸš€

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5748062.svg)](https://doi.org/10.5281/zenodo.4382739)
[![codecov](https://codecov.io/gh/jameschapman19/ProxTorch/graph/badge.svg?token=909RDXcEZK)](https://codecov.io/gh/jameschapman19/ProxTorch)
[![version](https://img.shields.io/pypi/v/ProxTorch)](https://pypi.org/project/ProxTorch/)
[![downloads](https://img.shields.io/pypi/dm/ProxTorch)](https://pypi.org/project/ProxTorch/)

</div>

πŸ” **What is ProxTorch?**  
Dive into a rich realm of proximal operators and constraints with `ProxTorch`, a state-of-the-art Python library crafted
on PyTorch. Whether it's optimization challenges or the complexities of machine learning, `ProxTorch` is designed for
speed, efficiency, and seamless GPU integration.

## ✨ **Features**

- **πŸš€ GPU-Boosted**: Experience lightning-fast computations with extensive CUDA support.
- **πŸ”₯ PyTorch Synergy**: Naturally integrates with all your PyTorch endeavours.
- **πŸ“š Expansive Library**: From elemental norms (`L0`, `L1`, `L2`, `L∞`) to advanced regularizations like Total
  Variation and Fused Lasso.
- **🀝 User-Friendly**: Jump right in! Intuitive design means minimal disruptions to your existing projects.

## πŸ›  **Installation**

Getting started with `ProxTorch` is a breeze. Install from PyPI with:

```bash
pip install proxtorch
```

Or install from source with:

```bash
git clone
cd ProxTorch
pip install -e .
```


## πŸš€ **Quick Start**

Dive in with this straightforward example:

```python
import torch
from proxtorch.operators import L1

# Define a sample tensor
x = torch.tensor([0.5, -1.2, 0.3, -0.4, 0.7])

# Initialize the L1 proximal operator
l1_prox = L1(sigma=0.1)

# Compute the regularization component value
reg_value = l1_prox(x)
print("Regularization Value:", reg_value)

# Apply the proximal operator
result = l1_prox.prox(x)
print("Prox Result:", result)
```

## πŸ“œ **Diverse Proximal Operators**

### **Regularizers**

- **L1**, **L2 (Ridge)**, **ElasticNet**, **GroupLasso**, **TV** (includes TV_2D, TV_3D, TVL1_2D, TVL1_3D), **Frobenius
  **
- **Norms**: TraceNorm, NuclearNorm
- **FusedLasso**, **Huber**

### **Constraints**

- **L0Ball**, **L1Ball**, **L2Ball**, **L∞Ball (Infinity Norm)**, **Frobenius**, **TraceNorm**, **Box**

## πŸ“– **Documentation**

Explore the comprehensive documentation on [Read the Docs](https://proxtorch.readthedocs.io/en/latest/).

## πŸ™Œ **Credits**

`ProxTorch` stands on the shoulders of giants:

- [pyproximal](https://github.com/PyLops/pyproximal)
- [ProxGradPyTorch](https://github.com/KentonMurray/ProxGradPytorch)
- [nilearn](https://github.com/nilearn/nilearn/blob/321494420f95c7a5e2172108400194b37a02e628/nilearn/decoding/proximal_operators.py)

We're thrilled to introduce `ProxTorch` as an exciting addition to the PyTorch ecosystem. We're confident you'll love
it!

## 🀝 **Contribute to the ProxTorch Revolution**

Got ideas? Join our vibrant community and make `ProxTorch` even better!

## πŸ“œ **License**

`ProxTorch` is proudly released under the [MIT License](LICENSE).

```
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jameschapman19/proxtorch",
    "name": "ProxTorch",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<4.0.0",
    "maintainer_email": "",
    "keywords": "proximal,optimisation,pytorch,proximal operators",
    "author": "jameschapman",
    "author_email": "james.chapman.19@ucl.ac.uk",
    "download_url": "https://files.pythonhosted.org/packages/a0/69/a7dc9898a1e41525032820cb7f9cd3ffac122e3fba86b05016f083cea8af/proxtorch-0.0.9.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n\n<img src=\"docs/source/proxtorch-logo.jpg\" alt=\"ProxTorch Logo\" width=\"200\"/>\n\n# ProxTorch\n\n**Unleashing Proximal Gradient Descent on PyTorch** \ud83d\ude80\n\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5748062.svg)](https://doi.org/10.5281/zenodo.4382739)\n[![codecov](https://codecov.io/gh/jameschapman19/ProxTorch/graph/badge.svg?token=909RDXcEZK)](https://codecov.io/gh/jameschapman19/ProxTorch)\n[![version](https://img.shields.io/pypi/v/ProxTorch)](https://pypi.org/project/ProxTorch/)\n[![downloads](https://img.shields.io/pypi/dm/ProxTorch)](https://pypi.org/project/ProxTorch/)\n\n</div>\n\n\ud83d\udd0d **What is ProxTorch?**  \nDive into a rich realm of proximal operators and constraints with `ProxTorch`, a state-of-the-art Python library crafted\non PyTorch. Whether it's optimization challenges or the complexities of machine learning, `ProxTorch` is designed for\nspeed, efficiency, and seamless GPU integration.\n\n## \u2728 **Features**\n\n- **\ud83d\ude80 GPU-Boosted**: Experience lightning-fast computations with extensive CUDA support.\n- **\ud83d\udd25 PyTorch Synergy**: Naturally integrates with all your PyTorch endeavours.\n- **\ud83d\udcda Expansive Library**: From elemental norms (`L0`, `L1`, `L2`, `L\u221e`) to advanced regularizations like Total\n  Variation and Fused Lasso.\n- **\ud83e\udd1d User-Friendly**: Jump right in! Intuitive design means minimal disruptions to your existing projects.\n\n## \ud83d\udee0 **Installation**\n\nGetting started with `ProxTorch` is a breeze. Install from PyPI with:\n\n```bash\npip install proxtorch\n```\n\nOr install from source with:\n\n```bash\ngit clone\ncd ProxTorch\npip install -e .\n```\n\n\n## \ud83d\ude80 **Quick Start**\n\nDive in with this straightforward example:\n\n```python\nimport torch\nfrom proxtorch.operators import L1\n\n# Define a sample tensor\nx = torch.tensor([0.5, -1.2, 0.3, -0.4, 0.7])\n\n# Initialize the L1 proximal operator\nl1_prox = L1(sigma=0.1)\n\n# Compute the regularization component value\nreg_value = l1_prox(x)\nprint(\"Regularization Value:\", reg_value)\n\n# Apply the proximal operator\nresult = l1_prox.prox(x)\nprint(\"Prox Result:\", result)\n```\n\n## \ud83d\udcdc **Diverse Proximal Operators**\n\n### **Regularizers**\n\n- **L1**, **L2 (Ridge)**, **ElasticNet**, **GroupLasso**, **TV** (includes TV_2D, TV_3D, TVL1_2D, TVL1_3D), **Frobenius\n  **\n- **Norms**: TraceNorm, NuclearNorm\n- **FusedLasso**, **Huber**\n\n### **Constraints**\n\n- **L0Ball**, **L1Ball**, **L2Ball**, **L\u221eBall (Infinity Norm)**, **Frobenius**, **TraceNorm**, **Box**\n\n## \ud83d\udcd6 **Documentation**\n\nExplore the comprehensive documentation on [Read the Docs](https://proxtorch.readthedocs.io/en/latest/).\n\n## \ud83d\ude4c **Credits**\n\n`ProxTorch` stands on the shoulders of giants:\n\n- [pyproximal](https://github.com/PyLops/pyproximal)\n- [ProxGradPyTorch](https://github.com/KentonMurray/ProxGradPytorch)\n- [nilearn](https://github.com/nilearn/nilearn/blob/321494420f95c7a5e2172108400194b37a02e628/nilearn/decoding/proximal_operators.py)\n\nWe're thrilled to introduce `ProxTorch` as an exciting addition to the PyTorch ecosystem. We're confident you'll love\nit!\n\n## \ud83e\udd1d **Contribute to the ProxTorch Revolution**\n\nGot ideas? Join our vibrant community and make `ProxTorch` even better!\n\n## \ud83d\udcdc **License**\n\n`ProxTorch` is proudly released under the [MIT License](LICENSE).\n\n```",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "ProxTorch is a PyTorch library for proximal operators.",
    "version": "0.0.9",
    "project_urls": {
        "Homepage": "https://github.com/jameschapman19/proxtorch"
    },
    "split_keywords": [
        "proximal",
        "optimisation",
        "pytorch",
        "proximal operators"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8763ae716e3918f44a017dcc7b3231d473615fc84d3aa3fd10450047f951c9ad",
                "md5": "08b17802936a77da9eb01c88854fdf36",
                "sha256": "bc36b23add389ae38658223db52894e4969239356324b335a7df5a7aaf0086eb"
            },
            "downloads": -1,
            "filename": "proxtorch-0.0.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "08b17802936a77da9eb01c88854fdf36",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<4.0.0",
            "size": 21835,
            "upload_time": "2023-09-05T20:51:10",
            "upload_time_iso_8601": "2023-09-05T20:51:10.340349Z",
            "url": "https://files.pythonhosted.org/packages/87/63/ae716e3918f44a017dcc7b3231d473615fc84d3aa3fd10450047f951c9ad/proxtorch-0.0.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a069a7dc9898a1e41525032820cb7f9cd3ffac122e3fba86b05016f083cea8af",
                "md5": "0b1a5ae9be975898e2349ee543988ea6",
                "sha256": "d26b45f35d14367d7b41394ce1b4567441bd00c026c2532aa74696156dd2c2a6"
            },
            "downloads": -1,
            "filename": "proxtorch-0.0.9.tar.gz",
            "has_sig": false,
            "md5_digest": "0b1a5ae9be975898e2349ee543988ea6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<4.0.0",
            "size": 12503,
            "upload_time": "2023-09-05T20:51:11",
            "upload_time_iso_8601": "2023-09-05T20:51:11.880020Z",
            "url": "https://files.pythonhosted.org/packages/a0/69/a7dc9898a1e41525032820cb7f9cd3ffac122e3fba86b05016f083cea8af/proxtorch-0.0.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-05 20:51:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jameschapman19",
    "github_project": "proxtorch",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "proxtorch"
}
        
Elapsed time: 0.37172s