PyNAFF


NamePyNAFF JSON
Version 1.1.6 PyPI version JSON
download
home_pagehttps://github.com/nkarast/PyNAFF
SummaryA Python module that implements the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm
upload_time2023-12-06 13:34:26
maintainer
docs_urlNone
authorNikos Karastathis
requires_python
licenseGPLv3
keywords naff frequency analysis
VCS
bugtrack_url
requirements numpy setuptools
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyNAFF

Authors:

*  Foteini Asvesta (fasvesta .at. cern .dot. ch)
*  Nikos Karastathis (nkarast .at. cern .dot. ch)
*  Panagiotis Zisopoulos (pzisopou .at. cern .dot. ch)

A Python module that implements the [Numerical Analysis of Fundamental Frequencies method of J. Laskar](http://www.sciencedirect.com/science/article/pii/001910359090084M).
The code works either as a script (as the original code of Laskar) or loaded as a module in Python/Julia code or jupyter-like notebooks (i.e. SWAN).


## Installation:

The module is ported in [PyPi](https://pypi.org/project/PyNAFF/) so the user can simply run:

```bash
pip install --user PyNAFF
```

or from Git:
```bash
pip install --user git+https://github.com/nkarast/PyNAFF.git
```


## Example of Usage
```python
import PyNAFF as pnf
import numpy as np

t = np.linspace(1, 3000, num=3000, endpoint=True)
Q = 0.12345
signal = np.sin(2.0*np.pi*Q*t)


# Signature: pnf.naff(data, turns=300, nterms=1, skipTurns=0, getFullSpectrum=False, window=1)
# Docstring:
# The driving function for the NAFF algorithm.
# Inputs :
# *  data : NumPy array with TbT data
# *  turns : number of points to consider from the input data
# *  nterms : maximum number of harmonics to search for in the data sample
# *  skipTurns : number of observations (data points) to skip from the start of the input iterable
# *  getFullSpectrum : [True | False]
#                                   If True, a normal FFT is used (both negative and positive freq.)
#                                   If False, an rFFT is used (only positive frequencies)
# *  window : the order of window to be applied on the input data (default =1)
# Returns : Array with frequencies and amplitudes in the format:
#           [order of harmonic, frequency, Amplitude, Re{Amplitude}, Im{Amplitude}]

pnf.naff(signal, turns=500, nterms=1, skipTurns=0, getFullSpectrum=False, window=1)

# outputs an array of arrays for each frequency. Each sub-array includes:
# [order of harmonic, frequency, Amplitude, Re{Amplitude}, Im{Amplitude]


# My frequency is simply 
pnf.naff(signal, 500, 1, 0 , False)[0][1]

```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/nkarast/PyNAFF",
    "name": "PyNAFF",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "NAFF,FREQUENCY ANALYSIS",
    "author": "Nikos Karastathis",
    "author_email": "nkarast@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b4/e4/75222b59bbf7ce98d7ce15a8d9699ad87ba72e18ebdac552c52f83df9bcd/PyNAFF-1.1.6.tar.gz",
    "platform": null,
    "description": "# PyNAFF\n\nAuthors:\n\n*  Foteini Asvesta (fasvesta .at. cern .dot. ch)\n*  Nikos Karastathis (nkarast .at. cern .dot. ch)\n*  Panagiotis Zisopoulos (pzisopou .at. cern .dot. ch)\n\nA Python module that implements the [Numerical Analysis of Fundamental Frequencies method of J. Laskar](http://www.sciencedirect.com/science/article/pii/001910359090084M).\nThe code works either as a script (as the original code of Laskar) or loaded as a module in Python/Julia code or jupyter-like notebooks (i.e. SWAN).\n\n\n## Installation:\n\nThe module is ported in [PyPi](https://pypi.org/project/PyNAFF/) so the user can simply run:\n\n```bash\npip install --user PyNAFF\n```\n\nor from Git:\n```bash\npip install --user git+https://github.com/nkarast/PyNAFF.git\n```\n\n\n## Example of Usage\n```python\nimport PyNAFF as pnf\nimport numpy as np\n\nt = np.linspace(1, 3000, num=3000, endpoint=True)\nQ = 0.12345\nsignal = np.sin(2.0*np.pi*Q*t)\n\n\n# Signature: pnf.naff(data, turns=300, nterms=1, skipTurns=0, getFullSpectrum=False, window=1)\n# Docstring:\n# The driving function for the NAFF algorithm.\n# Inputs :\n# *  data : NumPy array with TbT data\n# *  turns : number of points to consider from the input data\n# *  nterms : maximum number of harmonics to search for in the data sample\n# *  skipTurns : number of observations (data points) to skip from the start of the input iterable\n# *  getFullSpectrum : [True | False]\n#                                   If True, a normal FFT is used (both negative and positive freq.)\n#                                   If False, an rFFT is used (only positive frequencies)\n# *  window : the order of window to be applied on the input data (default =1)\n# Returns : Array with frequencies and amplitudes in the format:\n#           [order of harmonic, frequency, Amplitude, Re{Amplitude}, Im{Amplitude}]\n\npnf.naff(signal, turns=500, nterms=1, skipTurns=0, getFullSpectrum=False, window=1)\n\n# outputs an array of arrays for each frequency. Each sub-array includes:\n# [order of harmonic, frequency, Amplitude, Re{Amplitude}, Im{Amplitude]\n\n\n# My frequency is simply \npnf.naff(signal, 500, 1, 0 , False)[0][1]\n\n```\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "A Python module that implements the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm",
    "version": "1.1.6",
    "project_urls": {
        "Homepage": "https://github.com/nkarast/PyNAFF"
    },
    "split_keywords": [
        "naff",
        "frequency analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "de4b8a41628e48cd51d48ac8dce90b0c7a4ce870d50585bafb3b327adff9417b",
                "md5": "a5317df0c77424ee1d5a91f157a23b8d",
                "sha256": "c862aa8d4281332ff6809f721b3fdca5ff1008880bbe689c0d0e476578ccf65c"
            },
            "downloads": -1,
            "filename": "PyNAFF-1.1.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a5317df0c77424ee1d5a91f157a23b8d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 18250,
            "upload_time": "2023-12-06T13:34:25",
            "upload_time_iso_8601": "2023-12-06T13:34:25.078401Z",
            "url": "https://files.pythonhosted.org/packages/de/4b/8a41628e48cd51d48ac8dce90b0c7a4ce870d50585bafb3b327adff9417b/PyNAFF-1.1.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b4e475222b59bbf7ce98d7ce15a8d9699ad87ba72e18ebdac552c52f83df9bcd",
                "md5": "bd7f5213c2b0cf4834dbda787359be36",
                "sha256": "cc57efadcd895f4af14be5de83bab83ecbd1fc481488a210ae81f57b7b0d3a5c"
            },
            "downloads": -1,
            "filename": "PyNAFF-1.1.6.tar.gz",
            "has_sig": false,
            "md5_digest": "bd7f5213c2b0cf4834dbda787359be36",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17633,
            "upload_time": "2023-12-06T13:34:26",
            "upload_time_iso_8601": "2023-12-06T13:34:26.184244Z",
            "url": "https://files.pythonhosted.org/packages/b4/e4/75222b59bbf7ce98d7ce15a8d9699ad87ba72e18ebdac552c52f83df9bcd/PyNAFF-1.1.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-06 13:34:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nkarast",
    "github_project": "PyNAFF",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "~=",
                    "1.25.0"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "~=",
                    "65.5.1"
                ]
            ]
        }
    ],
    "lcname": "pynaff"
}
        
Elapsed time: 0.19488s