PyStore - Fast data store for Pandas timeseries data
====================================================
.. image:: https://img.shields.io/badge/python-2.7,%203.5+-blue.svg?style=flat
:target: https://pypi.python.org/pypi/pystore
:alt: Python version
.. image:: https://img.shields.io/pypi/v/pystore.svg?maxAge=60
:target: https://pypi.python.org/pypi/pystore
:alt: PyPi version
.. image:: https://img.shields.io/pypi/status/pystore.svg?maxAge=60
:target: https://pypi.python.org/pypi/pystore
:alt: PyPi status
.. image:: https://img.shields.io/travis/ranaroussi/pystore/master.svg?maxAge=1
:target: https://travis-ci.com/ranaroussi/pystore
:alt: Travis-CI build status
.. image:: https://www.codefactor.io/repository/github/ranaroussi/pystore/badge
:target: https://www.codefactor.io/repository/github/ranaroussi/pystore
:alt: CodeFactor
.. image:: https://img.shields.io/github/stars/ranaroussi/pystore.svg?style=social&label=Star&maxAge=60
:target: https://github.com/ranaroussi/pystore
:alt: Star this repo
.. image:: https://img.shields.io/twitter/follow/aroussi.svg?style=social&label=Follow&maxAge=60
:target: https://twitter.com/aroussi
:alt: Follow me on twitter
\
`PyStore <https://github.com/ranaroussi/pystore>`_ is a simple (yet powerful)
datastore for Pandas dataframes, and while it can store any Pandas object,
**it was designed with storing timeseries data in mind**.
It's built on top of `Pandas <http://pandas.pydata.org>`_, `Numpy <http://numpy.pydata.org>`_,
`Dask <http://dask.pydata.org>`_, and `Parquet <http://parquet.apache.org>`_
(via `pyarrow <https://github.com/apache/arrow>`_),
to provide an easy to use datastore for Python developers that can easily
query millions of rows per second per client.
==> Check out `this Blog post <https://medium.com/@aroussi/fast-data-store-for-pandas-time-series-data-using-pystore-89d9caeef4e2>`_
for the reasoning and philosophy behind PyStore, as well as a detailed tutorial with code examples.
==> Follow `this PyStore tutorial <https://github.com/ranaroussi/pystore/blob/master/examples/pystore-tutorial.ipynb>`_ in Jupyter notebook format.
Quickstart
==========
Install PyStore
---------------
Install using `pip`:
.. code:: bash
$ pip install pystore --upgrade --no-cache-dir
Install using `conda`:
.. code:: bash
$ conda install -c ranaroussi pystore
**INSTALLATION NOTE:**
If you don't have Snappy installed (compression/decompression library), you'll need to
you'll need to `install it first <https://github.com/ranaroussi/pystore#dependencies>`_.
Using PyStore
-------------
.. code:: python
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pystore
import quandl
# Set storage path (optional)
# Defaults to `~/pystore` or `PYSTORE_PATH` environment variable (if set)
pystore.set_path("~/pystore")
# List stores
pystore.list_stores()
# Connect to datastore (create it if not exist)
store = pystore.store('mydatastore')
# List existing collections
store.list_collections()
# Access a collection (create it if not exist)
collection = store.collection('NASDAQ')
# List items in collection
collection.list_items()
# Load some data from Quandl
aapl = quandl.get("WIKI/AAPL", authtoken="your token here")
# Store the first 100 rows of the data in the collection under "AAPL"
collection.write('AAPL', aapl[:100], metadata={'source': 'Quandl'})
# Reading the item's data
item = collection.item('AAPL')
data = item.data # <-- Dask dataframe (see dask.pydata.org)
metadata = item.metadata
df = item.to_pandas()
# Append the rest of the rows to the "AAPL" item
collection.append('AAPL', aapl[100:])
# Reading the item's data
item = collection.item('AAPL')
data = item.data
metadata = item.metadata
df = item.to_pandas()
# --- Query functionality ---
# Query avaialable symbols based on metadata
collection.list_items(some_key='some_value', other_key='other_value')
# --- Snapshot functionality ---
# Snapshot a collection
# (Point-in-time named reference for all current symbols in a collection)
collection.create_snapshot('snapshot_name')
# List available snapshots
collection.list_snapshots()
# Get a version of a symbol given a snapshot name
collection.item('AAPL', snapshot='snapshot_name')
# Delete a collection snapshot
collection.delete_snapshot('snapshot_name')
# ...
# Delete the item from the current version
collection.delete_item('AAPL')
# Delete the collection
store.delete_collection('NASDAQ')
Using Dask schedulers
---------------------
PyStore 0.1.18+ supports using Dask distributed.
To use a local Dask scheduler, add this to your code:
.. code:: python
from dask.distributed import LocalCluster
pystore.set_client(LocalCluster())
To use a distributed Dask scheduler, add this to your code:
.. code:: python
pystore.set_client("tcp://xxx.xxx.xxx.xxx:xxxx")
pystore.set_path("/path/to/shared/volume/all/workers/can/access")
Concepts
========
PyStore provides namespaced *collections* of data.
These collections allow bucketing data by *source*, *user* or some other metric
(for example frequency: End-Of-Day; Minute Bars; etc.). Each collection (or namespace)
maps to a directory containing partitioned **parquet files** for each item (e.g. symbol).
A good practice it to create collections that may look something like this:
* collection.EOD
* collection.ONEMINUTE
Requirements
============
* Python 2.7 or Python > 3.5
* Pandas
* Numpy
* Dask
* Pyarrow
* `Snappy <http://google.github.io/snappy/>`_ (Google's compression/decompression library)
* multitasking
PyStore was tested to work on \*nix-like systems, including macOS.
Dependencies:
-------------
PyStore uses `Snappy <http://google.github.io/snappy/>`_,
a fast and efficient compression/decompression library from Google.
You'll need to install Snappy on your system before installing PyStore.
\* See the ``python-snappy`` `Github repo <https://github.com/andrix/python-snappy#dependencies>`_ for more information.
***nix Systems:**
- APT: ``sudo apt-get install libsnappy-dev``
- RPM: ``sudo yum install libsnappy-devel``
**macOS:**
First, install Snappy's C library using `Homebrew <https://brew.sh>`_:
.. code::
$ brew install snappy
Then, install Python's snappy using conda:
.. code::
$ conda install python-snappy -c conda-forge
...or, using `pip`:
.. code::
$ CPPFLAGS="-I/usr/local/include -L/usr/local/lib" pip install python-snappy
**Windows:**
Windows users should checkout `Snappy for Windows <https://snappy.machinezoo.com>`_ and `this Stackoverflow post <https://stackoverflow.com/a/43756412/1783569>`_ for help on installing Snappy and ``python-snappy``.
Roadmap
=======
PyStore currently offers support for local filesystem (including attached network drives).
I plan on adding support for Amazon S3 (via `s3fs <http://s3fs.readthedocs.io/>`_),
Google Cloud Storage (via `gcsfs <https://github.com/dask/gcsfs/>`_)
and Hadoop Distributed File System (via `hdfs3 <http://hdfs3.readthedocs.io/>`_) in the future.
Acknowledgements
================
PyStore is hugely inspired by `Man AHL <http://www.ahl.com/>`_'s
`Arctic <https://github.com/manahl/arctic>`_ which uses
MongoDB for storage and allow for versioning and other features.
I highly reommend you check it out.
License
=======
PyStore is licensed under the **Apache License, Version 2.0**. A copy of which is included in LICENSE.txt.
-----
I'm very interested in your experience with PyStore.
Please drop me an note with any feedback you have.
Contributions welcome!
\- **Ran Aroussi**
Raw data
{
"_id": null,
"home_page": "https://github.com/ranaroussi/pystore",
"name": "PyStore",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "dask, datastore, flatfile, pystore",
"author": "Ran Aroussi",
"author_email": "ran@aroussi.com",
"download_url": "https://files.pythonhosted.org/packages/8b/c6/934106fb2a1c45c375e91e7468b9c79755de9f2a0b836ad002295a38df24/pystore-0.1.24.tar.gz",
"platform": "linux",
"description": "PyStore - Fast data store for Pandas timeseries data\n====================================================\n\n.. image:: https://img.shields.io/badge/python-2.7,%203.5+-blue.svg?style=flat\n :target: https://pypi.python.org/pypi/pystore\n :alt: Python version\n\n.. image:: https://img.shields.io/pypi/v/pystore.svg?maxAge=60\n :target: https://pypi.python.org/pypi/pystore\n :alt: PyPi version\n\n.. image:: https://img.shields.io/pypi/status/pystore.svg?maxAge=60\n :target: https://pypi.python.org/pypi/pystore\n :alt: PyPi status\n\n.. image:: https://img.shields.io/travis/ranaroussi/pystore/master.svg?maxAge=1\n :target: https://travis-ci.com/ranaroussi/pystore\n :alt: Travis-CI build status\n\n.. image:: https://www.codefactor.io/repository/github/ranaroussi/pystore/badge\n :target: https://www.codefactor.io/repository/github/ranaroussi/pystore\n :alt: CodeFactor\n\n.. image:: https://img.shields.io/github/stars/ranaroussi/pystore.svg?style=social&label=Star&maxAge=60\n :target: https://github.com/ranaroussi/pystore\n :alt: Star this repo\n\n.. image:: https://img.shields.io/twitter/follow/aroussi.svg?style=social&label=Follow&maxAge=60\n :target: https://twitter.com/aroussi\n :alt: Follow me on twitter\n\n\\\n\n\n`PyStore <https://github.com/ranaroussi/pystore>`_ is a simple (yet powerful)\ndatastore for Pandas dataframes, and while it can store any Pandas object,\n**it was designed with storing timeseries data in mind**.\n\nIt's built on top of `Pandas <http://pandas.pydata.org>`_, `Numpy <http://numpy.pydata.org>`_,\n`Dask <http://dask.pydata.org>`_, and `Parquet <http://parquet.apache.org>`_\n(via `pyarrow <https://github.com/apache/arrow>`_),\nto provide an easy to use datastore for Python developers that can easily\nquery millions of rows per second per client.\n\n\n==> Check out `this Blog post <https://medium.com/@aroussi/fast-data-store-for-pandas-time-series-data-using-pystore-89d9caeef4e2>`_\nfor the reasoning and philosophy behind PyStore, as well as a detailed tutorial with code examples.\n\n==> Follow `this PyStore tutorial <https://github.com/ranaroussi/pystore/blob/master/examples/pystore-tutorial.ipynb>`_ in Jupyter notebook format.\n\n\nQuickstart\n==========\n\nInstall PyStore\n---------------\n\nInstall using `pip`:\n\n.. code:: bash\n\n $ pip install pystore --upgrade --no-cache-dir\n\nInstall using `conda`:\n\n.. code:: bash\n\n $ conda install -c ranaroussi pystore\n\n**INSTALLATION NOTE:**\nIf you don't have Snappy installed (compression/decompression library), you'll need to\nyou'll need to `install it first <https://github.com/ranaroussi/pystore#dependencies>`_.\n\n\nUsing PyStore\n-------------\n\n.. code:: python\n\n #!/usr/bin/env python\n # -*- coding: utf-8 -*-\n\n import pystore\n import quandl\n\n # Set storage path (optional)\n # Defaults to `~/pystore` or `PYSTORE_PATH` environment variable (if set)\n pystore.set_path(\"~/pystore\")\n\n # List stores\n pystore.list_stores()\n\n # Connect to datastore (create it if not exist)\n store = pystore.store('mydatastore')\n\n # List existing collections\n store.list_collections()\n\n # Access a collection (create it if not exist)\n collection = store.collection('NASDAQ')\n\n # List items in collection\n collection.list_items()\n\n # Load some data from Quandl\n aapl = quandl.get(\"WIKI/AAPL\", authtoken=\"your token here\")\n\n # Store the first 100 rows of the data in the collection under \"AAPL\"\n collection.write('AAPL', aapl[:100], metadata={'source': 'Quandl'})\n\n # Reading the item's data\n item = collection.item('AAPL')\n data = item.data # <-- Dask dataframe (see dask.pydata.org)\n metadata = item.metadata\n df = item.to_pandas()\n\n # Append the rest of the rows to the \"AAPL\" item\n collection.append('AAPL', aapl[100:])\n\n # Reading the item's data\n item = collection.item('AAPL')\n data = item.data\n metadata = item.metadata\n df = item.to_pandas()\n\n\n # --- Query functionality ---\n\n # Query avaialable symbols based on metadata\n collection.list_items(some_key='some_value', other_key='other_value')\n\n\n # --- Snapshot functionality ---\n\n # Snapshot a collection\n # (Point-in-time named reference for all current symbols in a collection)\n collection.create_snapshot('snapshot_name')\n\n # List available snapshots\n collection.list_snapshots()\n\n # Get a version of a symbol given a snapshot name\n collection.item('AAPL', snapshot='snapshot_name')\n\n # Delete a collection snapshot\n collection.delete_snapshot('snapshot_name')\n\n\n # ...\n\n\n # Delete the item from the current version\n collection.delete_item('AAPL')\n\n # Delete the collection\n store.delete_collection('NASDAQ')\n\n\nUsing Dask schedulers\n---------------------\n\nPyStore 0.1.18+ supports using Dask distributed.\n\nTo use a local Dask scheduler, add this to your code:\n\n.. code:: python\n\n from dask.distributed import LocalCluster\n pystore.set_client(LocalCluster())\n\n\nTo use a distributed Dask scheduler, add this to your code:\n\n.. code:: python\n\n pystore.set_client(\"tcp://xxx.xxx.xxx.xxx:xxxx\")\n pystore.set_path(\"/path/to/shared/volume/all/workers/can/access\")\n\n\n\nConcepts\n========\n\nPyStore provides namespaced *collections* of data.\nThese collections allow bucketing data by *source*, *user* or some other metric\n(for example frequency: End-Of-Day; Minute Bars; etc.). Each collection (or namespace)\nmaps to a directory containing partitioned **parquet files** for each item (e.g. symbol).\n\nA good practice it to create collections that may look something like this:\n\n* collection.EOD\n* collection.ONEMINUTE\n\nRequirements\n============\n\n* Python 2.7 or Python > 3.5\n* Pandas\n* Numpy\n* Dask\n* Pyarrow\n* `Snappy <http://google.github.io/snappy/>`_ (Google's compression/decompression library)\n* multitasking\n\nPyStore was tested to work on \\*nix-like systems, including macOS.\n\n\nDependencies:\n-------------\n\nPyStore uses `Snappy <http://google.github.io/snappy/>`_,\na fast and efficient compression/decompression library from Google.\nYou'll need to install Snappy on your system before installing PyStore.\n\n\\* See the ``python-snappy`` `Github repo <https://github.com/andrix/python-snappy#dependencies>`_ for more information.\n\n***nix Systems:**\n\n- APT: ``sudo apt-get install libsnappy-dev``\n- RPM: ``sudo yum install libsnappy-devel``\n\n**macOS:**\n\nFirst, install Snappy's C library using `Homebrew <https://brew.sh>`_:\n\n.. code::\n\n $ brew install snappy\n\nThen, install Python's snappy using conda:\n\n.. code::\n\n $ conda install python-snappy -c conda-forge\n\n...or, using `pip`:\n\n.. code::\n\n $ CPPFLAGS=\"-I/usr/local/include -L/usr/local/lib\" pip install python-snappy\n\n\n**Windows:**\n\nWindows users should checkout `Snappy for Windows <https://snappy.machinezoo.com>`_ and `this Stackoverflow post <https://stackoverflow.com/a/43756412/1783569>`_ for help on installing Snappy and ``python-snappy``.\n\n\nRoadmap\n=======\n\nPyStore currently offers support for local filesystem (including attached network drives).\nI plan on adding support for Amazon S3 (via `s3fs <http://s3fs.readthedocs.io/>`_),\nGoogle Cloud Storage (via `gcsfs <https://github.com/dask/gcsfs/>`_)\nand Hadoop Distributed File System (via `hdfs3 <http://hdfs3.readthedocs.io/>`_) in the future.\n\nAcknowledgements\n================\n\nPyStore is hugely inspired by `Man AHL <http://www.ahl.com/>`_'s\n`Arctic <https://github.com/manahl/arctic>`_ which uses\nMongoDB for storage and allow for versioning and other features.\nI highly reommend you check it out.\n\n\n\nLicense\n=======\n\n\nPyStore is licensed under the **Apache License, Version 2.0**. A copy of which is included in LICENSE.txt.\n\n-----\n\nI'm very interested in your experience with PyStore.\nPlease drop me an note with any feedback you have.\n\nContributions welcome!\n\n\\- **Ran Aroussi**\n",
"bugtrack_url": null,
"license": "Apache Software License",
"summary": "Fast data store for Pandas timeseries data",
"version": "0.1.24",
"project_urls": {
"Homepage": "https://github.com/ranaroussi/pystore"
},
"split_keywords": [
"dask",
" datastore",
" flatfile",
" pystore"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d3acbef022c9c9c8de9306e35d171bc70542fcced5905cca798ec5b6c60b5c71",
"md5": "cf844c75b6241cd28c20812498faecab",
"sha256": "c6418769e4456646ed928939774970bb0d41d4a1f118a88df75abc831e39a443"
},
"downloads": -1,
"filename": "PyStore-0.1.24-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cf844c75b6241cd28c20812498faecab",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 17167,
"upload_time": "2024-07-10T10:16:11",
"upload_time_iso_8601": "2024-07-10T10:16:11.961608Z",
"url": "https://files.pythonhosted.org/packages/d3/ac/bef022c9c9c8de9306e35d171bc70542fcced5905cca798ec5b6c60b5c71/PyStore-0.1.24-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8bc6934106fb2a1c45c375e91e7468b9c79755de9f2a0b836ad002295a38df24",
"md5": "dfa4e9d26c761532e032a7d62c2eed6b",
"sha256": "abe99682d2da83a6619077c34f9ca7117680d5e98923f35a6e0457fcfe8ac43b"
},
"downloads": -1,
"filename": "pystore-0.1.24.tar.gz",
"has_sig": false,
"md5_digest": "dfa4e9d26c761532e032a7d62c2eed6b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 13659,
"upload_time": "2024-07-10T10:16:13",
"upload_time_iso_8601": "2024-07-10T10:16:13.800390Z",
"url": "https://files.pythonhosted.org/packages/8b/c6/934106fb2a1c45c375e91e7468b9c79755de9f2a0b836ad002295a38df24/pystore-0.1.24.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-10 10:16:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ranaroussi",
"github_project": "pystore",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "python-snappy",
"specs": [
[
">=",
"0.5.4"
]
]
},
{
"name": "toolz",
"specs": [
[
">=",
"0.10.0"
]
]
},
{
"name": "partd",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "cloudpickle",
"specs": [
[
">=",
"1.2.1"
]
]
},
{
"name": "distributed",
"specs": [
[
">=",
"1.28.1"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"0.24.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.17.3"
]
]
},
{
"name": "pyarrow",
"specs": [
[
">=",
"15.0.2"
]
]
},
{
"name": "dask",
"specs": [
[
">=",
"2024.1.0"
]
]
},
{
"name": "multitasking",
"specs": [
[
">=",
"0.0.9"
]
]
}
],
"lcname": "pystore"
}