SCMeTA


NameSCMeTA JSON
Version 0.2.6 PyPI version JSON
download
home_pagehttps://www.sc-meta.org/
SummaryA python package for single-cell metabolism analysis.
upload_time2024-02-26 08:24:31
maintainer
docs_urlNone
authorEstrellaXD
requires_python>=3.9,<3.13
licenseGPL-3.0-or-later
keywords single-cell metabolism analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SCMeTA

SCMeTA is a python library of single-cell meta-analysis tools. It provides a set of functions for single-cell meta-analysis, including data integration, batch effect correction, cell type annotation, cell clustering, cell trajectory inference, and cell type marker identification. It also provides a set of functions for single-cell data visualization, including dimension reduction, cell clustering, cell trajectory inference, and cell type marker identification. 

## Installation

SCMeTA is available on PyPI and can be installed with pip:

```bash
pip install scmeta
```

## Usage

### Data integration

```python

from SCMeTA import Process

sc = Process()

# Load data

sc.load("data/example.RAW")

# Data process

sc.pre_process()
sc.process()
sc.post_process()

```

## Documentation

The official documentation is hosted on Read the Docs: https://sc-meta.com/

## License

SCMeTA is licensed under the GPLv3 license. See the LICENSE file for more details.



            

Raw data

            {
    "_id": null,
    "home_page": "https://www.sc-meta.org/",
    "name": "SCMeTA",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<3.13",
    "maintainer_email": "",
    "keywords": "single-cell,metabolism,analysis",
    "author": "EstrellaXD",
    "author_email": "estrellaxd05@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/30/17/c6039c95769ce5ecfb3ca696125b7f703d8a12d70c313fd3b742e809f1fa/scmeta-0.2.6.tar.gz",
    "platform": null,
    "description": "# SCMeTA\n\nSCMeTA is a python library of single-cell meta-analysis tools. It provides a set of functions for single-cell meta-analysis, including data integration, batch effect correction, cell type annotation, cell clustering, cell trajectory inference, and cell type marker identification. It also provides a set of functions for single-cell data visualization, including dimension reduction, cell clustering, cell trajectory inference, and cell type marker identification. \n\n## Installation\n\nSCMeTA is available on PyPI and can be installed with pip:\n\n```bash\npip install scmeta\n```\n\n## Usage\n\n### Data integration\n\n```python\n\nfrom SCMeTA import Process\n\nsc = Process()\n\n# Load data\n\nsc.load(\"data/example.RAW\")\n\n# Data process\n\nsc.pre_process()\nsc.process()\nsc.post_process()\n\n```\n\n## Documentation\n\nThe official documentation is hosted on Read the Docs: https://sc-meta.com/\n\n## License\n\nSCMeTA is licensed under the GPLv3 license. See the LICENSE file for more details.\n\n\n",
    "bugtrack_url": null,
    "license": "GPL-3.0-or-later",
    "summary": "A python package for single-cell metabolism analysis.",
    "version": "0.2.6",
    "project_urls": {
        "Documentation": "https://www.sc-meta.org/",
        "Homepage": "https://www.sc-meta.org/",
        "Repository": "https://github.com/SCMeTA/SCMeTA"
    },
    "split_keywords": [
        "single-cell",
        "metabolism",
        "analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2d20abf8001c1a01452b8841f113f3dab7f36bed54e96670158c8d7c3dda3bba",
                "md5": "f34204a043b4965fffb19f243f63fbdc",
                "sha256": "03f6934586e08bc94a915451320c86a278f21ac5adda2743d3de83a3d05025ae"
            },
            "downloads": -1,
            "filename": "scmeta-0.2.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f34204a043b4965fffb19f243f63fbdc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<3.13",
            "size": 510188,
            "upload_time": "2024-02-26T08:24:28",
            "upload_time_iso_8601": "2024-02-26T08:24:28.571514Z",
            "url": "https://files.pythonhosted.org/packages/2d/20/abf8001c1a01452b8841f113f3dab7f36bed54e96670158c8d7c3dda3bba/scmeta-0.2.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3017c6039c95769ce5ecfb3ca696125b7f703d8a12d70c313fd3b742e809f1fa",
                "md5": "157e9a04a4e54bde4588227333621dae",
                "sha256": "e0e14c77979336c19f2329e0a4efb567caa44b49ddb6c33bceae990615b24521"
            },
            "downloads": -1,
            "filename": "scmeta-0.2.6.tar.gz",
            "has_sig": false,
            "md5_digest": "157e9a04a4e54bde4588227333621dae",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<3.13",
            "size": 495998,
            "upload_time": "2024-02-26T08:24:31",
            "upload_time_iso_8601": "2024-02-26T08:24:31.188402Z",
            "url": "https://files.pythonhosted.org/packages/30/17/c6039c95769ce5ecfb3ca696125b7f703d8a12d70c313fd3b742e809f1fa/scmeta-0.2.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-26 08:24:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SCMeTA",
    "github_project": "SCMeTA",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "scmeta"
}
        
Elapsed time: 3.29632s