SynLrn


NameSynLrn JSON
Version 0.0.5 PyPI version JSON
download
home_pageNone
SummaryA modern way to allow your AI to learn from every interaction
upload_time2025-07-19 22:42:41
maintainerNone
docs_urlNone
authorTristan McBride Sr.
requires_python>=3.10
licenseNone
keywords ai agents skills tools learning productivity automation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
---

# SynLrn – Modular Multi-Stage Learning for AI (No Naming or Structure Restrictions)

## Overview

**SynLrn** is a production-ready, modular system for context-based learning memory and retrieval—designed for any AI or agent workflow.
SynLrn supports any number of **custom learning stages**, adapts to your data, and makes context recall fast and simple—**no naming, schema, or vendor constraints.**

**Highlights:**

* **Any learning stages you want:** Use any stage names or workflow steps (thinking, clarifying, etc.)
* **No format restrictions:** Structure your learned data and knowledge base how you want.
* **No external server:** Everything runs locally, uses fast SQLite and RapidFuzz.
* **Plug-in knowledge base:** Start empty or preload with your own examples.
* **Works with all frameworks:** Use SynLrn in any Python project, agent, or LLM pipeline.

---

## Why SynLrn?

Traditional “memory” frameworks force you to:

* Use their schema, stage names, or folder structures.
* Fit your workflow to *their* definitions.
* Often require a server, specific model, or fixed APIs.

**SynLrn:**

* **Lets you define your own learning flow**—no hard-coded stage names, no schema lock-in.
* **Loads any data, any way:** Add, group, and recall examples however you want.
* **Keeps you in control:** Your workflow, your code, your memory.

---

## Key Features

* **Flexible stage loading:** Use any number of workflow stages.
* **Pluggable knowledge base:** Point to your own Python modules or classes.
* **Context-based retrieval:** RapidFuzz for fast, fuzzy example recall.
* **Low token use:** Matches and retrievals use minimal tokens, ideal for LLMs instead of providing full examples. in one shot SynLrn retrieves relevant examples based on context.
* **Minimal, direct API:** No setup bloat or function call ceremony.

---

## Example Layout (ALL valid)

```
project_root/
├── SLKnowledgebase/
│   └── Knowledgebase.py  # Your example base (optional)
├── .env
├── app.py
└── ...
```

Or any layout you prefer—**no requirements**.

---

## How It Works

1. **You define your workflow stages.**
2. **Store and retrieve context/response examples** per stage, for any purpose.
3. **Recall examples by context** (with fallbacks if needed).

---

## Example Usage

```python
from SynLrn import SynLrn

stages = [
    "thinking", "clarifying", "gathering",
    "defining", "refining", "reflecting", "decision"
]

fallbacks = {
    "thinking": [
        "user:\nWhat can you do?\n\nassistant:\nI can help with a wide variety of tasks, including..."
    ]
}

learn = SynLrn(stages=stages, fallbacks=fallbacks)

# Add a new memory/example
learn.addToLearned("thinking", "How do you work?", "I process your requests by reasoning over ...")

# Retrieve similar examples
results = learn.retrieveStage("How do you work?", "thinking")
for entry in results:
    print(entry)
```

**See full code and more examples on GitHub.**

---

## Customization

* **Knowledge base:**
  Optionally preload with your own class/module, any structure, any naming—SynLrn will find your example data automatically.

* **Fallbacks:**
  Pass a dict or a callable for custom fallback responses per stage.

* **Storage:**
  All learning is stored locally (SQLite, configurable directory).

---

## FAQ

**Q: Do I have to follow any naming or folder structure?**
A: **No.** Use any stage names, directory layout, or file names you want.

**Q: Can I use this in any Python agent, RAG, or LLM workflow?**
A: Yes.

**Q: Do I need a server, or does SynLrn require a specific cloud provider?**
A: No. Everything is local, pure Python.

---

## Code Examples

You can find code examples on my [GitHub repository](https://github.com/TristanMcBrideSr/TechBook).

---

## License

This project is licensed under the [Apache License, Version 2.0](LICENSE).
Copyright 2025 Tristan McBride Sr.

---

## Acknowledgements

Project by:
- Tristan McBride Sr.
- Sybil

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "SynLrn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "\"Tristan McBride Sr.\" <142635792+TristanMcBrideSr@users.noreply.github.com>",
    "keywords": "AI, Agents, Skills, Tools, Learning, Productivity, Automation",
    "author": "Tristan McBride Sr.",
    "author_email": "\"Tristan McBride Sr.\" <142635792+TristanMcBrideSr@users.noreply.github.com>",
    "download_url": "https://files.pythonhosted.org/packages/67/c4/1699b4f49d398d2413335ffd85e47472d379ce954fc1294c7777dd47c434/synlrn-0.0.5.tar.gz",
    "platform": null,
    "description": "\ufeff\r\n---\r\n\r\n# SynLrn \u2013 Modular Multi-Stage Learning for AI (No Naming or Structure Restrictions)\r\n\r\n## Overview\r\n\r\n**SynLrn** is a production-ready, modular system for context-based learning memory and retrieval\u2014designed for any AI or agent workflow.\r\nSynLrn supports any number of **custom learning stages**, adapts to your data, and makes context recall fast and simple\u2014**no naming, schema, or vendor constraints.**\r\n\r\n**Highlights:**\r\n\r\n* **Any learning stages you want:** Use any stage names or workflow steps (thinking, clarifying, etc.)\r\n* **No format restrictions:** Structure your learned data and knowledge base how you want.\r\n* **No external server:** Everything runs locally, uses fast SQLite and RapidFuzz.\r\n* **Plug-in knowledge base:** Start empty or preload with your own examples.\r\n* **Works with all frameworks:** Use SynLrn in any Python project, agent, or LLM pipeline.\r\n\r\n---\r\n\r\n## Why SynLrn?\r\n\r\nTraditional \u201cmemory\u201d frameworks force you to:\r\n\r\n* Use their schema, stage names, or folder structures.\r\n* Fit your workflow to *their* definitions.\r\n* Often require a server, specific model, or fixed APIs.\r\n\r\n**SynLrn:**\r\n\r\n* **Lets you define your own learning flow**\u2014no hard-coded stage names, no schema lock-in.\r\n* **Loads any data, any way:** Add, group, and recall examples however you want.\r\n* **Keeps you in control:** Your workflow, your code, your memory.\r\n\r\n---\r\n\r\n## Key Features\r\n\r\n* **Flexible stage loading:** Use any number of workflow stages.\r\n* **Pluggable knowledge base:** Point to your own Python modules or classes.\r\n* **Context-based retrieval:** RapidFuzz for fast, fuzzy example recall.\r\n* **Low token use:** Matches and retrievals use minimal tokens, ideal for LLMs instead of providing full examples. in one shot SynLrn retrieves relevant examples based on context.\r\n* **Minimal, direct API:** No setup bloat or function call ceremony.\r\n\r\n---\r\n\r\n## Example Layout (ALL valid)\r\n\r\n```\r\nproject_root/\r\n\u251c\u2500\u2500 SLKnowledgebase/\r\n\u2502   \u2514\u2500\u2500 Knowledgebase.py  # Your example base (optional)\r\n\u251c\u2500\u2500 .env\r\n\u251c\u2500\u2500 app.py\r\n\u2514\u2500\u2500 ...\r\n```\r\n\r\nOr any layout you prefer\u2014**no requirements**.\r\n\r\n---\r\n\r\n## How It Works\r\n\r\n1. **You define your workflow stages.**\r\n2. **Store and retrieve context/response examples** per stage, for any purpose.\r\n3. **Recall examples by context** (with fallbacks if needed).\r\n\r\n---\r\n\r\n## Example Usage\r\n\r\n```python\r\nfrom SynLrn import SynLrn\r\n\r\nstages = [\r\n    \"thinking\", \"clarifying\", \"gathering\",\r\n    \"defining\", \"refining\", \"reflecting\", \"decision\"\r\n]\r\n\r\nfallbacks = {\r\n    \"thinking\": [\r\n        \"user:\\nWhat can you do?\\n\\nassistant:\\nI can help with a wide variety of tasks, including...\"\r\n    ]\r\n}\r\n\r\nlearn = SynLrn(stages=stages, fallbacks=fallbacks)\r\n\r\n# Add a new memory/example\r\nlearn.addToLearned(\"thinking\", \"How do you work?\", \"I process your requests by reasoning over ...\")\r\n\r\n# Retrieve similar examples\r\nresults = learn.retrieveStage(\"How do you work?\", \"thinking\")\r\nfor entry in results:\r\n    print(entry)\r\n```\r\n\r\n**See full code and more examples on GitHub.**\r\n\r\n---\r\n\r\n## Customization\r\n\r\n* **Knowledge base:**\r\n  Optionally preload with your own class/module, any structure, any naming\u2014SynLrn will find your example data automatically.\r\n\r\n* **Fallbacks:**\r\n  Pass a dict or a callable for custom fallback responses per stage.\r\n\r\n* **Storage:**\r\n  All learning is stored locally (SQLite, configurable directory).\r\n\r\n---\r\n\r\n## FAQ\r\n\r\n**Q: Do I have to follow any naming or folder structure?**\r\nA: **No.** Use any stage names, directory layout, or file names you want.\r\n\r\n**Q: Can I use this in any Python agent, RAG, or LLM workflow?**\r\nA: Yes.\r\n\r\n**Q: Do I need a server, or does SynLrn require a specific cloud provider?**\r\nA: No. Everything is local, pure Python.\r\n\r\n---\r\n\r\n## Code Examples\r\n\r\nYou can find code examples on my [GitHub repository](https://github.com/TristanMcBrideSr/TechBook).\r\n\r\n---\r\n\r\n## License\r\n\r\nThis project is licensed under the [Apache License, Version 2.0](LICENSE).\r\nCopyright 2025 Tristan McBride Sr.\r\n\r\n---\r\n\r\n## Acknowledgements\r\n\r\nProject by:\r\n- Tristan McBride Sr.\r\n- Sybil\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A modern way to allow your AI to learn from every interaction",
    "version": "0.0.5",
    "project_urls": {
        "Homepage": "https://github.com/TristanMcBrideSr"
    },
    "split_keywords": [
        "ai",
        " agents",
        " skills",
        " tools",
        " learning",
        " productivity",
        " automation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "95fe53a63293b10a4e708a35cd0fabc818cb5de85ce8edc8a2b27f0be01c4fb0",
                "md5": "88f9b49244d5d43953068b27948d552c",
                "sha256": "9d0e4a2003b99e9e56bacd25668e219dbe8381433b00a0933a3424db8dd203ad"
            },
            "downloads": -1,
            "filename": "synlrn-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "88f9b49244d5d43953068b27948d552c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 8080,
            "upload_time": "2025-07-19T22:42:40",
            "upload_time_iso_8601": "2025-07-19T22:42:40.452946Z",
            "url": "https://files.pythonhosted.org/packages/95/fe/53a63293b10a4e708a35cd0fabc818cb5de85ce8edc8a2b27f0be01c4fb0/synlrn-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "67c41699b4f49d398d2413335ffd85e47472d379ce954fc1294c7777dd47c434",
                "md5": "6efc4a8a46afc49e35fd491e846e51c0",
                "sha256": "c76022321fa2a0cd89cf9964e6beb4b0e7fecfb5c311940207ebec3044fb7762"
            },
            "downloads": -1,
            "filename": "synlrn-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "6efc4a8a46afc49e35fd491e846e51c0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 10191,
            "upload_time": "2025-07-19T22:42:41",
            "upload_time_iso_8601": "2025-07-19T22:42:41.664690Z",
            "url": "https://files.pythonhosted.org/packages/67/c4/1699b4f49d398d2413335ffd85e47472d379ce954fc1294c7777dd47c434/synlrn-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-19 22:42:41",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "synlrn"
}
        
Elapsed time: 0.79335s