SyntaxMorph


NameSyntaxMorph JSON
Version 1.0.5 PyPI version JSON
download
home_pagehttps://github.com/Enderjua/SyntaxMorph
SummarySyntaxMorph is a Python module that enables code conversion between different programming languages
upload_time2023-08-25 12:11:55
maintainer
docs_urlNone
authorMarijua
requires_python
licenseGPLv3
keywords morph syntax python syntaxmorph ai machinelearning change codexchange
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            SyntaxMorph
SyntaxMorph
========

SyntaxMorph is a module that aims to facilitate the conversion between programming languages by utilizing OpenAI.

-  Free software: GPLv3 license
-  Github: https://github.com/Enderjua/SyntaxMorph



Features
~~~~~~~~

-  Determining which programming language a given code belongs to.
-  Identifying the general structure of the given code.
-  Converting the given code to the desired programming language.
-  Aiming to collect a comprehensive dataset.
-  Eliminating the dependency on OpenAI.

Versions
========

1.0.5
~~~~~~~~
-  Folder error resolved and published

1.0.4
~~~~~~~~
-  Folder error resolved and published

1.0.3
~~~~~~~~
-  Folder error resolved and published

1.0.2
~~~~~~~~
-  Published.


Developer
~~~~~~~~~

-  Marijua @ ``enderjua gmail com``


Quick Tutorial
--------------


    import openai
   
    openai.api_key = "YOUR_API_KEY"

    from morph import formatCode
    from morph import columDetect
    from morph import languageDetect
    
    
Language Detection
~~~~~~~~~~~~~~~~~~




    code = " print('hello world') "
    languageDetection = languageDetect.languageDetect(code)
    print("Language Detected: "+languageDetection) # Python



    Language Detected: Python
    


Colum Detection
~~~~~~~~~~~~



    code = " def main(a, b, c):
    
           d = a+b+c
           print(d)

     main(5,7,9)"
     columDetection = columDetect.columDetect(code)
     print("Colum Detected: "+columDetection) # Function && Fonksiyon




    Colum Detected: Fonksiyon




    print(columDetect.columDetect(code))




    Function && Fonksiyon


Language translation
~~~~~~~~~~~~~~~~~~~~~~



    code = " print('hello world') "
    
    newCode = formatCode.formatDetected(languageDetection, code, 1, C++, columDetection)
    print(newCode)
    
    




    #include <iostream>

    int main() {
        std::cout << "Hello World!" << std::endl;
        return 0;
    }


Create a function for Flask API
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

main.py:



    import openai
    openai.api_key = "YOUR_API_KEY"
    
    from morph import formatCode as f
    from morph import languageDetect as l
    from morph import columDetect as c
    
    def morphApi(code, lang):
       language = l.languageDetect(code)
       colum = c.columDetect(code)
       newCode = f.formatDetected(language, code, 1, lang, colum)
       return newCode
       
    # code = morphApi("print('hello')", "C++")
    # print(code)




    #include <iostream>

    int main() {
        std::cout << "Hello World!" << std::endl;
        return 0;
    }


Create a Flask API
~~~~~~~~~~~~~~~~~~~~



    from flask import Flask, jsonify
    from flask_cors import CORS
    from urllib.parse import unqoute
    
    app = Flask(__name__)
    CORS(app)
    
    @app.route('/translateAPI/<string:language>/<path:code>', methods=['GET'])
    def translating(language2, code):
      from main import morphApi
      code = morphApi(code, language2)
      return code
      
    if __name__ = '__main__':
        app.run(debug=True)
    




    localhost:5000/translateAPI/C++/print('hello world')
    
    #include <iostream>

    int main() {
        std::cout << "Hello World!" << std::endl;
        return 0;
    }
    

Future
~~~~~~~~

-  We have set out on the process of training our own AI.
-  We will share our AI for free here as a result of the AI training.
-  We will ensure the independence of OpenAI.




 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Enderjua/SyntaxMorph",
    "name": "SyntaxMorph",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "morph,syntax,python,syntaxmorph,ai,machinelearning,change,codexchange",
    "author": "Marijua",
    "author_email": "enderjua@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/9e/fa/18b9eaabbba5766255c857e9eaa432834ef1949cf6cbcca92f20ff04d3f1/SyntaxMorph-1.0.5.tar.gz",
    "platform": null,
    "description": "SyntaxMorph\nSyntaxMorph\n========\n\nSyntaxMorph is a module that aims to facilitate the conversion between programming languages by utilizing OpenAI.\n\n-  Free software: GPLv3 license\n-  Github: https://github.com/Enderjua/SyntaxMorph\n\n\n\nFeatures\n~~~~~~~~\n\n-  Determining which programming language a given code belongs to.\n-  Identifying the general structure of the given code.\n-  Converting the given code to the desired programming language.\n-  Aiming to collect a comprehensive dataset.\n-  Eliminating the dependency on OpenAI.\n\nVersions\n========\n\n1.0.5\n~~~~~~~~\n-  Folder error resolved and published\n\n1.0.4\n~~~~~~~~\n-  Folder error resolved and published\n\n1.0.3\n~~~~~~~~\n-  Folder error resolved and published\n\n1.0.2\n~~~~~~~~\n-  Published.\n\n\nDeveloper\n~~~~~~~~~\n\n-  Marijua @ ``enderjua gmail com``\n\n\nQuick Tutorial\n--------------\n\n\n    import openai\n   \n    openai.api_key = \"YOUR_API_KEY\"\n\n    from morph import formatCode\n    from morph import columDetect\n    from morph import languageDetect\n    \n    \nLanguage Detection\n~~~~~~~~~~~~~~~~~~\n\n\n\n\n    code = \" print('hello world') \"\n    languageDetection = languageDetect.languageDetect(code)\n    print(\"Language Detected: \"+languageDetection) # Python\n\n\n\n    Language Detected: Python\n    \n\n\nColum Detection\n~~~~~~~~~~~~\n\n\n\n    code = \" def main(a, b, c):\n    \n           d = a+b+c\n           print(d)\n\n     main(5,7,9)\"\n     columDetection = columDetect.columDetect(code)\n     print(\"Colum Detected: \"+columDetection) # Function && Fonksiyon\n\n\n\n\n    Colum Detected: Fonksiyon\n\n\n\n\n    print(columDetect.columDetect(code))\n\n\n\n\n    Function && Fonksiyon\n\n\nLanguage translation\n~~~~~~~~~~~~~~~~~~~~~~\n\n\n\n    code = \" print('hello world') \"\n    \n    newCode = formatCode.formatDetected(languageDetection, code, 1, C++, columDetection)\n    print(newCode)\n    \n    \n\n\n\n\n    #include <iostream>\n\n    int main() {\n        std::cout << \"Hello World!\" << std::endl;\n        return 0;\n    }\n\n\nCreate a function for Flask API\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nmain.py:\n\n\n\n    import openai\n    openai.api_key = \"YOUR_API_KEY\"\n    \n    from morph import formatCode as f\n    from morph import languageDetect as l\n    from morph import columDetect as c\n    \n    def morphApi(code, lang):\n       language = l.languageDetect(code)\n       colum = c.columDetect(code)\n       newCode = f.formatDetected(language, code, 1, lang, colum)\n       return newCode\n       \n    # code = morphApi(\"print('hello')\", \"C++\")\n    # print(code)\n\n\n\n\n    #include <iostream>\n\n    int main() {\n        std::cout << \"Hello World!\" << std::endl;\n        return 0;\n    }\n\n\nCreate a Flask API\n~~~~~~~~~~~~~~~~~~~~\n\n\n\n    from flask import Flask, jsonify\n    from flask_cors import CORS\n    from urllib.parse import unqoute\n    \n    app = Flask(__name__)\n    CORS(app)\n    \n    @app.route('/translateAPI/<string:language>/<path:code>', methods=['GET'])\n    def translating(language2, code):\n      from main import morphApi\n      code = morphApi(code, language2)\n      return code\n      \n    if __name__ = '__main__':\n        app.run(debug=True)\n    \n\n\n\n\n    localhost:5000/translateAPI/C++/print('hello world')\n    \n    #include <iostream>\n\n    int main() {\n        std::cout << \"Hello World!\" << std::endl;\n        return 0;\n    }\n    \n\nFuture\n~~~~~~~~\n\n-  We have set out on the process of training our own AI.\n-  We will share our AI for free here as a result of the AI training.\n-  We will ensure the independence of OpenAI.\n\n\n\n\n \n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "SyntaxMorph is a Python module that enables code conversion between different programming languages",
    "version": "1.0.5",
    "project_urls": {
        "Homepage": "https://github.com/Enderjua/SyntaxMorph"
    },
    "split_keywords": [
        "morph",
        "syntax",
        "python",
        "syntaxmorph",
        "ai",
        "machinelearning",
        "change",
        "codexchange"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9efa18b9eaabbba5766255c857e9eaa432834ef1949cf6cbcca92f20ff04d3f1",
                "md5": "308da7fea2a0596431ebd180f5135275",
                "sha256": "a579fbf29b9c13da4ede2cc917409cade35392867540337d4f495f6d5b7e8a73"
            },
            "downloads": -1,
            "filename": "SyntaxMorph-1.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "308da7fea2a0596431ebd180f5135275",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8082,
            "upload_time": "2023-08-25T12:11:55",
            "upload_time_iso_8601": "2023-08-25T12:11:55.007860Z",
            "url": "https://files.pythonhosted.org/packages/9e/fa/18b9eaabbba5766255c857e9eaa432834ef1949cf6cbcca92f20ff04d3f1/SyntaxMorph-1.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-25 12:11:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Enderjua",
    "github_project": "SyntaxMorph",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "syntaxmorph"
}
        
Elapsed time: 0.12333s