<p align="center">
<img width="300" src="https://image.tensorartassets.com/cdn-cgi/image/anim=true,f=avif,q=85/frontend/1711339876825.svg">
</p>
<div align="center">
<a href="https://badge.fury.io/py/tensorart"><img src="https://d25lcipzij17d.cloudfront.net/badge.svg?id=py&r=r&ts=1683906897&type=6e&v=0.1&x2=0" alt="PyPI version" height="18"></a>
</div>
<div>
TensorART is a hybrid API for tensor.art. It is able to communicate with Tensor
using web-scraping.. It is
able to access most used or useful ai features, such as text2img, img2img , upscale, and a lot more.
</div>
> [!WARNING]
> This project is probably against TensorART TOS. Use at your own risks.
## Installation
- Install using `pip` (python `3.11` or higher required, recommended version):
```shell
pip install --upgrade TensorART
```
- Or from this repo to get the latest fixes/features:
```shell
pip install --upgrade git+https://github.com/XZeipher/TensorAI.git
```
- Or, for python 3.10 and higher.
```shell
pip install --upgrade git+https://github.com/XZeipher/TensorAI.git@py-3.10
```
- Or, for even lower python versions, there is automatic branch with several features removed (might be unstable).
```shell
pip install --upgrade git+https://github.com/XZeipher/TensorAI.git@compat
```
## Quickstart
> [!NOTE]
> You can find the docs on this project [here](https://tensorapi.onrender.com/docs).
```python
from TensorART import TensorClient
import aiohttp,aiofiles
# Initialise a client
client = TensorClient()
# Create ai image
image_url = await client.create(model_id=1,prompt="blonde girl sitting in garden")
# save image binary data
async with aiohttp.ClientSession as session:
async with session.get(image_url) as response:
async with aiofiles.open('image.png','wb') as f:
await f.write(await response.content)
# image will be saved as image.png
```
# Note
<strong>This repository is initiated and maintained by [XZeipher](https://github.com/XZeipher)
</strong>
## License
TensorART uses GPLv3. See the `LICENSE` file.
## Contributing
Feel free to contribute to this project by submitting
feature requests, issues, bugs, or whatever.
Raw data
{
"_id": null,
"home_page": "https://github.com/XZeipher/TensorAI",
"name": "TensorART",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "ai, ml, bot, api, image, prompt",
"author": "Alpha Coder",
"author_email": "alphacoders@yahoo.com",
"download_url": null,
"platform": null,
"description": "<p align=\"center\">\n <img width=\"300\" src=\"https://image.tensorartassets.com/cdn-cgi/image/anim=true,f=avif,q=85/frontend/1711339876825.svg\">\n</p>\n\n<div align=\"center\">\n <a href=\"https://badge.fury.io/py/tensorart\"><img src=\"https://d25lcipzij17d.cloudfront.net/badge.svg?id=py&r=r&ts=1683906897&type=6e&v=0.1&x2=0\" alt=\"PyPI version\" height=\"18\"></a>\n</div>\n\n\n<div>\nTensorART is a hybrid API for tensor.art. It is able to communicate with Tensor\nusing web-scraping.. It is\nable to access most used or useful ai features, such as text2img, img2img , upscale, and a lot more.\n</div>\n\n> [!WARNING]\n> This project is probably against TensorART TOS. Use at your own risks.\n\n## Installation\n\n- Install using `pip` (python `3.11` or higher required, recommended version): \n```shell\npip install --upgrade TensorART\n```\n\n- Or from this repo to get the latest fixes/features:\n```shell\npip install --upgrade git+https://github.com/XZeipher/TensorAI.git\n```\n\n- Or, for python 3.10 and higher.\n```shell\npip install --upgrade git+https://github.com/XZeipher/TensorAI.git@py-3.10\n```\n\n- Or, for even lower python versions, there is automatic branch with several features removed (might be unstable).\n```shell\npip install --upgrade git+https://github.com/XZeipher/TensorAI.git@compat\n```\n\n## Quickstart\n\n> [!NOTE]\n> You can find the docs on this project [here](https://tensorapi.onrender.com/docs).\n\n```python\nfrom TensorART import TensorClient\nimport aiohttp,aiofiles\n\n# Initialise a client\nclient = TensorClient()\n\n# Create ai image\nimage_url = await client.create(model_id=1,prompt=\"blonde girl sitting in garden\")\n\n# save image binary data\nasync with aiohttp.ClientSession as session:\n async with session.get(image_url) as response:\n async with aiofiles.open('image.png','wb') as f:\n await f.write(await response.content)\n\n# image will be saved as image.png\n\n```\n\n# Note\n<strong>This repository is initiated and maintained by [XZeipher](https://github.com/XZeipher)\n</strong>\n\n\n## License\n\nTensorART uses GPLv3. See the `LICENSE` file.\n\n## Contributing\n\nFeel free to contribute to this project by submitting\nfeature requests, issues, bugs, or whatever.\n",
"bugtrack_url": null,
"license": "GNU General Public License v3.0",
"summary": "API BASED IMAGE GENERATOR PYPI.",
"version": "1.0.0",
"project_urls": {
"Homepage": "https://github.com/XZeipher/TensorAI"
},
"split_keywords": [
"ai",
" ml",
" bot",
" api",
" image",
" prompt"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1a631ad2c4a7ab66b1cbc7f1bd03bfacf6c620ad9c854c6bf5683886ce12165c",
"md5": "b407d245f7f00fc97d5701ed29ea8052",
"sha256": "b0283d70126fd8afdc17950dcc88937460db337aafd2e46e16cd4b435a37b423"
},
"downloads": -1,
"filename": "TensorART-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b407d245f7f00fc97d5701ed29ea8052",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3039,
"upload_time": "2024-05-05T11:01:53",
"upload_time_iso_8601": "2024-05-05T11:01:53.419632Z",
"url": "https://files.pythonhosted.org/packages/1a/63/1ad2c4a7ab66b1cbc7f1bd03bfacf6c620ad9c854c6bf5683886ce12165c/TensorART-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-05 11:01:53",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "XZeipher",
"github_project": "TensorAI",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "tensorart"
}