a-pandas-ex-closest-color


Namea-pandas-ex-closest-color JSON
Version 0.10 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/a_pandas_ex_closest_color
SummaryCalculates the closest colors from 2 lists
upload_time2022-12-18 12:34:13
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords pandas dataframe colors rgb numpy
VCS
bugtrack_url
requirements a_pandas_ex_obj_into_cell a_pandas_ex_to_tuple numexpr numpy pandas
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Calculates the closest colors from 2 lists



```python

pip install a-pandas-ex-closest-color

```



```python



from a_pandas_ex_closest_color import pd_add_closest_color

import pandas as pd

pd_add_closest_color()



colorlist = [

    (0, 0, 0),  # black

    (230, 25, 75),  # red

    (60, 180, 75),  # green

    (255, 225, 25),  # yellow

    (0, 130, 200),  # blue

    (245, 130, 48),  # orange

    (145, 30, 180),  # purple

    (70, 240, 240),  # cyan

    (240, 50, 230),  # magenta

    (210, 245, 60),  # lime

    (250, 190, 190),  # pink

    (0, 128, 128),  # teal

    (230, 190, 255),  # lavender

    (170, 110, 40),  # brown

    (255, 250, 200),  # beige

    (128, 0, 0),  # maroon

    (170, 255, 195),  # mint

    (128, 128, 0),  # olive

    (255, 215, 180),  # coral

    (0, 0, 128),  # navy

    (128, 128, 128),  # grey

    (255, 255, 255),  # white

    (115, 12, 37),  # dark red

    (30, 90, 37),  # dark green

    (127, 112, 12),  # dark yellow

    (0, 65, 100),  # dark blue

    (122, 65, 24),  # dark orange

    (72, 15, 90),  # dark purple

    (35, 120, 120),  # dark cyan

    (120, 25, 115),  # dark magenta

    (105, 122, 30),  # dark lime

    (125, 95, 95),  # dark pink

    (0, 64, 64),  # dark teal

    (115, 95, 127),  # dark lavender

    (85, 55, 20),  # dark brown

    (127, 125, 100),  # dark beige

    (64, 0, 0),  # dark maroon

    (85, 127, 97),  # dark mint

    (64, 64, 0),  # dark olive

    (127, 107, 90),  # dark coral

    (0, 0, 64),  # dark navy

    (64, 64, 64),  # dark grey

]

wanted_colors = [(255, 0, 0), (255, 255, 0), (0, 0, 0)]

df = pd.Q_find_closest_color(wanted_colors=wanted_colors,colorlist=colorlist)

print(df)





       r    g    b    rating          rgb

0    230   25   75   82.9375  (255, 0, 0)

1    128    0    0  127.0000  (255, 0, 0)

2    245  130   48  139.0000  (255, 0, 0)

3    170  110   40  144.6250  (255, 0, 0)

4    115   12   37  145.2500  (255, 0, 0)

..   ...  ...  ...       ...          ...

121  250  190  190  367.0000    (0, 0, 0)

122  255  215  180  379.0000    (0, 0, 0)

123  230  190  255  392.5000    (0, 0, 0)

124  255  250  200  409.2500    (0, 0, 0)

125  255  255  255  441.7500    (0, 0, 0)

[126 rows x 5 columns]





```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/a_pandas_ex_closest_color",
    "name": "a-pandas-ex-closest-color",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "pandas,DataFrame,colors,rgb,numpy",
    "author": "Johannes Fischer",
    "author_email": "<aulasparticularesdealemaosp@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/9f/cb/0e7998e09b80719479e38175686d4aa962866f967a78d5c7ad27b6a5be7f/a_pandas_ex_closest_color-0.10.tar.gz",
    "platform": null,
    "description": "\n# Calculates the closest colors from 2 lists\n\n\n\n```python\n\npip install a-pandas-ex-closest-color\n\n```\n\n\n\n```python\n\n\n\nfrom a_pandas_ex_closest_color import pd_add_closest_color\n\nimport pandas as pd\n\npd_add_closest_color()\n\n\n\ncolorlist = [\n\n    (0, 0, 0),  # black\n\n    (230, 25, 75),  # red\n\n    (60, 180, 75),  # green\n\n    (255, 225, 25),  # yellow\n\n    (0, 130, 200),  # blue\n\n    (245, 130, 48),  # orange\n\n    (145, 30, 180),  # purple\n\n    (70, 240, 240),  # cyan\n\n    (240, 50, 230),  # magenta\n\n    (210, 245, 60),  # lime\n\n    (250, 190, 190),  # pink\n\n    (0, 128, 128),  # teal\n\n    (230, 190, 255),  # lavender\n\n    (170, 110, 40),  # brown\n\n    (255, 250, 200),  # beige\n\n    (128, 0, 0),  # maroon\n\n    (170, 255, 195),  # mint\n\n    (128, 128, 0),  # olive\n\n    (255, 215, 180),  # coral\n\n    (0, 0, 128),  # navy\n\n    (128, 128, 128),  # grey\n\n    (255, 255, 255),  # white\n\n    (115, 12, 37),  # dark red\n\n    (30, 90, 37),  # dark green\n\n    (127, 112, 12),  # dark yellow\n\n    (0, 65, 100),  # dark blue\n\n    (122, 65, 24),  # dark orange\n\n    (72, 15, 90),  # dark purple\n\n    (35, 120, 120),  # dark cyan\n\n    (120, 25, 115),  # dark magenta\n\n    (105, 122, 30),  # dark lime\n\n    (125, 95, 95),  # dark pink\n\n    (0, 64, 64),  # dark teal\n\n    (115, 95, 127),  # dark lavender\n\n    (85, 55, 20),  # dark brown\n\n    (127, 125, 100),  # dark beige\n\n    (64, 0, 0),  # dark maroon\n\n    (85, 127, 97),  # dark mint\n\n    (64, 64, 0),  # dark olive\n\n    (127, 107, 90),  # dark coral\n\n    (0, 0, 64),  # dark navy\n\n    (64, 64, 64),  # dark grey\n\n]\n\nwanted_colors = [(255, 0, 0), (255, 255, 0), (0, 0, 0)]\n\ndf = pd.Q_find_closest_color(wanted_colors=wanted_colors,colorlist=colorlist)\n\nprint(df)\n\n\n\n\n\n       r    g    b    rating          rgb\n\n0    230   25   75   82.9375  (255, 0, 0)\n\n1    128    0    0  127.0000  (255, 0, 0)\n\n2    245  130   48  139.0000  (255, 0, 0)\n\n3    170  110   40  144.6250  (255, 0, 0)\n\n4    115   12   37  145.2500  (255, 0, 0)\n\n..   ...  ...  ...       ...          ...\n\n121  250  190  190  367.0000    (0, 0, 0)\n\n122  255  215  180  379.0000    (0, 0, 0)\n\n123  230  190  255  392.5000    (0, 0, 0)\n\n124  255  250  200  409.2500    (0, 0, 0)\n\n125  255  255  255  441.7500    (0, 0, 0)\n\n[126 rows x 5 columns]\n\n\n\n\n\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Calculates the closest colors from 2 lists",
    "version": "0.10",
    "split_keywords": [
        "pandas",
        "dataframe",
        "colors",
        "rgb",
        "numpy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "5cd154a6b70d96d1afa7a271619e9205",
                "sha256": "f21011d0cd0ad43008a7701c00ee924e337ae34450df9cbbe7b9211628b66982"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_closest_color-0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5cd154a6b70d96d1afa7a271619e9205",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6382,
            "upload_time": "2022-12-18T12:34:12",
            "upload_time_iso_8601": "2022-12-18T12:34:12.407320Z",
            "url": "https://files.pythonhosted.org/packages/ef/0b/6b644ddf7e3e3959844d33ff6dc2a30c6502f249f4476ba9886b9c1680cc/a_pandas_ex_closest_color-0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "54b0669d66f617d1c4cb63c556581e64",
                "sha256": "895225f015defd38d7e08eae5ff2dbb644f28428f3ae7932e339380e598ac91a"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_closest_color-0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "54b0669d66f617d1c4cb63c556581e64",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4588,
            "upload_time": "2022-12-18T12:34:13",
            "upload_time_iso_8601": "2022-12-18T12:34:13.861781Z",
            "url": "https://files.pythonhosted.org/packages/9f/cb/0e7998e09b80719479e38175686d4aa962866f967a78d5c7ad27b6a5be7f/a_pandas_ex_closest_color-0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-18 12:34:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hansalemaos",
    "github_project": "a_pandas_ex_closest_color",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "a_pandas_ex_obj_into_cell",
            "specs": []
        },
        {
            "name": "a_pandas_ex_to_tuple",
            "specs": []
        },
        {
            "name": "numexpr",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        }
    ],
    "lcname": "a-pandas-ex-closest-color"
}
        
Elapsed time: 0.02396s