a-pandas-ex-mindex-aggregate


Namea-pandas-ex-mindex-aggregate JSON
Version 0.10 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/a_pandas_ex_mindex_aggregate
SummaryAggregates multiple columns of a DataFrame
upload_time2022-12-21 12:31:17
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords pandas aggregate dataframe
VCS
bugtrack_url
requirements numpy pandas
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Aggregates multiple columns of a DataFrame



```python

pip install a-pandas-ex-mindex-aggregate

```



```python



from a_pandas_ex_mindex_aggregate import pd_add_mindex_aggregate

import pandas as pd

pd_add_mindex_aggregate()

df = pd.read_csv("https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv")



     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

0              1         0       3  ...   7.2500   NaN         S

1              2         1       1  ...  71.2833   C85         C

2              3         1       3  ...   7.9250   NaN         S

3              4         1       1  ...  53.1000  C123         S

4              5         0       3  ...   8.0500   NaN         S

..           ...       ...     ...  ...      ...   ...       ...

886          887         0       2  ...  13.0000   NaN         S

887          888         1       1  ...  30.0000   B42         S

888          889         0       3  ...  23.4500   NaN         S

889          890         1       1  ...  30.0000  C148         C

890          891         0       3  ...   7.7500   NaN         Q

[891 rows x 12 columns]





df.d_multiindex_aggregate(['Fare', 'Age'])



              PassengerId Survived  ...          Cabin Embarked

Fare     Age                        ...                        

0.0000   19.0       [303]      [0]  ...          [nan]      [S]

         25.0       [272]      [1]  ...          [nan]      [S]

         36.0       [180]      [0]  ...          [nan]      [S]

         38.0       [823]      [0]  ...          [nan]      [S]

         39.0       [807]      [0]  ...          [A36]      [S]

                   ...      ...  ...            ...      ...

263.0000 23.0        [89]      [1]  ...  [C23 C25 C27]      [S]

         24.0       [342]      [1]  ...  [C23 C25 C27]      [S]

         64.0       [439]      [0]  ...  [C23 C25 C27]      [S]

512.3292 35.0  [259, 738]   [1, 1]  ...    [nan, B101]   [C, C]

         36.0       [680]      [1]  ...  [B51 B53 B55]      [C]

[815 rows x 10 columns]



```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/a_pandas_ex_mindex_aggregate",
    "name": "a-pandas-ex-mindex-aggregate",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "pandas,Aggregate,DataFrame",
    "author": "Johannes Fischer",
    "author_email": "<aulasparticularesdealemaosp@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/a1/70/7da0e84bc1f1dff77963ef5ab671904b55ac36c67a71e333330ade0020f5/a_pandas_ex_mindex_aggregate-0.10.tar.gz",
    "platform": null,
    "description": "\n# Aggregates multiple columns of a DataFrame\n\n\n\n```python\n\npip install a-pandas-ex-mindex-aggregate\n\n```\n\n\n\n```python\n\n\n\nfrom a_pandas_ex_mindex_aggregate import pd_add_mindex_aggregate\n\nimport pandas as pd\n\npd_add_mindex_aggregate()\n\ndf = pd.read_csv(\"https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv\")\n\n\n\n     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n0              1         0       3  ...   7.2500   NaN         S\n\n1              2         1       1  ...  71.2833   C85         C\n\n2              3         1       3  ...   7.9250   NaN         S\n\n3              4         1       1  ...  53.1000  C123         S\n\n4              5         0       3  ...   8.0500   NaN         S\n\n..           ...       ...     ...  ...      ...   ...       ...\n\n886          887         0       2  ...  13.0000   NaN         S\n\n887          888         1       1  ...  30.0000   B42         S\n\n888          889         0       3  ...  23.4500   NaN         S\n\n889          890         1       1  ...  30.0000  C148         C\n\n890          891         0       3  ...   7.7500   NaN         Q\n\n[891 rows x 12 columns]\n\n\n\n\n\ndf.d_multiindex_aggregate(['Fare', 'Age'])\n\n\n\n              PassengerId Survived  ...          Cabin Embarked\n\nFare     Age                        ...                        \n\n0.0000   19.0       [303]      [0]  ...          [nan]      [S]\n\n         25.0       [272]      [1]  ...          [nan]      [S]\n\n         36.0       [180]      [0]  ...          [nan]      [S]\n\n         38.0       [823]      [0]  ...          [nan]      [S]\n\n         39.0       [807]      [0]  ...          [A36]      [S]\n\n                   ...      ...  ...            ...      ...\n\n263.0000 23.0        [89]      [1]  ...  [C23 C25 C27]      [S]\n\n         24.0       [342]      [1]  ...  [C23 C25 C27]      [S]\n\n         64.0       [439]      [0]  ...  [C23 C25 C27]      [S]\n\n512.3292 35.0  [259, 738]   [1, 1]  ...    [nan, B101]   [C, C]\n\n         36.0       [680]      [1]  ...  [B51 B53 B55]      [C]\n\n[815 rows x 10 columns]\n\n\n\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Aggregates multiple columns of a DataFrame",
    "version": "0.10",
    "split_keywords": [
        "pandas",
        "aggregate",
        "dataframe"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "2aa45e84c1dfc1406a276be1c3fe40ed",
                "sha256": "42c3bd70ac9a34287eed615e3c24cb2855b69dd72a663ced3bd3b247054c3bd7"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_mindex_aggregate-0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2aa45e84c1dfc1406a276be1c3fe40ed",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5868,
            "upload_time": "2022-12-21T12:31:15",
            "upload_time_iso_8601": "2022-12-21T12:31:15.849317Z",
            "url": "https://files.pythonhosted.org/packages/73/1d/39061a90bdcbf47d16e8e8f1780670f549ec01f9d98e60e0743ae3531a0f/a_pandas_ex_mindex_aggregate-0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "52cecdc4d8e154c8b14b05ac2e47d51e",
                "sha256": "0a75d6c27364caed51a2157eed53a9873c034f1a545cc68ac608131301164fe3"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_mindex_aggregate-0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "52cecdc4d8e154c8b14b05ac2e47d51e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4081,
            "upload_time": "2022-12-21T12:31:17",
            "upload_time_iso_8601": "2022-12-21T12:31:17.524262Z",
            "url": "https://files.pythonhosted.org/packages/a1/70/7da0e84bc1f1dff77963ef5ab671904b55ac36c67a71e333330ade0020f5/a_pandas_ex_mindex_aggregate-0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-21 12:31:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hansalemaos",
    "github_project": "a_pandas_ex_mindex_aggregate",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        }
    ],
    "lcname": "a-pandas-ex-mindex-aggregate"
}
        
Elapsed time: 0.02512s