# Several methods to split a pandas DataFrame/Series
```python
pip install a-pandas-ex-split
```
```python
from a_pandas_ex_split import pd_add_df_split
import pandas as pd
pd_add_df_split()
df = pd.read_csv(
"https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"
)
df = df[:50]
t1 = df.ds_iloc_split(splitindex=[10, 20, 40])
print(f"\n\n{t1=}")
t2 = df.ds_loc_split(splitindex=[10, 20, 35])
print(f"\n\n{t2=}")
t3 = df.ds_iloc_split_pairwise(splitindex=[(0, 10), (25, 30)], include_last=True)
print(f"\n\n{t3=}")
t4 = df.ds_split_in_n_parts(n=9) # len of results = [6, 6, 6, 6, 6, 5, 5, 5, 5]
print(f"\n\n{t4=}")
t5 = df.ds_split_in_n_parts_of_length(
size_of_each=8, exact_split=False
) # len of results = [9, 9, 8, 8, 8, 8]
print(f"\n\n{t5=}")
t6 = df.ds_split_in_n_parts_of_length(
size_of_each=8, exact_split=True
) # len of results = [8, 8, 8, 8, 8, 8, 2]
print(f"\n\n{t6=}")
t7 = df.PassengerId.ds_split_in_n_parts_of_length(
size_of_each=8, exact_split=True
) # len of results = [8, 8, 8, 8, 8, 8, 2]
print(f"\n\n{t7=}")
t1=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
[10 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
[10 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
34 35 0 1 ... 82.1708 NaN C
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
[20 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[10 rows x 12 columns]]
t2=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
[11 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
20 21 0 2 ... 26.0000 NaN S
[11 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
34 35 0 1 ... 82.1708 NaN C
35 36 0 1 ... 52.0000 NaN S
[16 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[15 rows x 12 columns]]
t3=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
[11 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
[6 rows x 12 columns]]
t4=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
34 35 0 1 ... 82.1708 NaN C
[5 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
[5 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
[5 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[5 rows x 12 columns]]
t5=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
8 9 1 3 ... 11.1333 NaN S
[9 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
[9 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
34 35 0 1 ... 82.1708 NaN C
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[8 rows x 12 columns]]
t6=[ PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
5 6 0 3 ... 8.4583 NaN Q
6 7 0 1 ... 51.8625 E46 S
7 8 0 3 ... 21.0750 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
8 9 1 3 ... 11.1333 NaN S
9 10 1 2 ... 30.0708 NaN C
10 11 1 3 ... 16.7000 G6 S
11 12 1 1 ... 26.5500 C103 S
12 13 0 3 ... 8.0500 NaN S
13 14 0 3 ... 31.2750 NaN S
14 15 0 3 ... 7.8542 NaN S
15 16 1 2 ... 16.0000 NaN S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
16 17 0 3 ... 29.1250 NaN Q
17 18 1 2 ... 13.0000 NaN S
18 19 0 3 ... 18.0000 NaN S
19 20 1 3 ... 7.2250 NaN C
20 21 0 2 ... 26.0000 NaN S
21 22 1 2 ... 13.0000 D56 S
22 23 1 3 ... 8.0292 NaN Q
23 24 1 1 ... 35.5000 A6 S
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
24 25 0 3 ... 21.0750 NaN S
25 26 1 3 ... 31.3875 NaN S
26 27 0 3 ... 7.2250 NaN C
27 28 0 1 ... 263.0000 C23 C25 C27 S
28 29 1 3 ... 7.8792 NaN Q
29 30 0 3 ... 7.8958 NaN S
30 31 0 1 ... 27.7208 NaN C
31 32 1 1 ... 146.5208 B78 C
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
32 33 1 3 ... 7.7500 NaN Q
33 34 0 2 ... 10.5000 NaN S
34 35 0 1 ... 82.1708 NaN C
35 36 0 1 ... 52.0000 NaN S
36 37 1 3 ... 7.2292 NaN C
37 38 0 3 ... 8.0500 NaN S
38 39 0 3 ... 18.0000 NaN S
39 40 1 3 ... 11.2417 NaN C
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
40 41 0 3 ... 9.4750 NaN S
41 42 0 2 ... 21.0000 NaN S
42 43 0 3 ... 7.8958 NaN C
43 44 1 2 ... 41.5792 NaN C
44 45 1 3 ... 7.8792 NaN Q
45 46 0 3 ... 8.0500 NaN S
46 47 0 3 ... 15.5000 NaN Q
47 48 1 3 ... 7.7500 NaN Q
[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked
48 49 0 3 ... 21.6792 NaN C
49 50 0 3 ... 17.8000 NaN S
[2 rows x 12 columns]]
t7=[0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
Name: PassengerId, dtype: int64, 8 9
9 10
10 11
11 12
12 13
13 14
14 15
15 16
Name: PassengerId, dtype: int64, 16 17
17 18
18 19
19 20
20 21
21 22
22 23
23 24
Name: PassengerId, dtype: int64, 24 25
25 26
26 27
27 28
28 29
29 30
30 31
31 32
Name: PassengerId, dtype: int64, 32 33
33 34
34 35
35 36
36 37
37 38
38 39
39 40
Name: PassengerId, dtype: int64, 40 41
41 42
42 43
43 44
44 45
45 46
46 47
47 48
Name: PassengerId, dtype: int64, 48 49
49 50
Name: PassengerId, dtype: int64]
```
Raw data
{
"_id": null,
"home_page": "https://github.com/hansalemaos/a_pandas_ex_split",
"name": "a-pandas-ex-split",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "pandas,DataFrame,split,numpy",
"author": "Johannes Fischer",
"author_email": "<aulasparticularesdealemaosp@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/b4/a4/17654742fe0cc7394d354aff965677568bbea7d0b46e364783fabbac5586/a_pandas_ex_split-0.10.tar.gz",
"platform": null,
"description": "\n# Several methods to split a pandas DataFrame/Series\n\n\n\n```python\n\npip install a-pandas-ex-split\n\n```\n\n\n\n```python\n\n\n\n\n\nfrom a_pandas_ex_split import pd_add_df_split\n\nimport pandas as pd\n\npd_add_df_split()\n\n\n\ndf = pd.read_csv(\n\n \"https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv\"\n\n)\n\ndf = df[:50]\n\nt1 = df.ds_iloc_split(splitindex=[10, 20, 40])\n\nprint(f\"\\n\\n{t1=}\")\n\nt2 = df.ds_loc_split(splitindex=[10, 20, 35])\n\nprint(f\"\\n\\n{t2=}\")\n\nt3 = df.ds_iloc_split_pairwise(splitindex=[(0, 10), (25, 30)], include_last=True)\n\nprint(f\"\\n\\n{t3=}\")\n\nt4 = df.ds_split_in_n_parts(n=9) # len of results = [6, 6, 6, 6, 6, 5, 5, 5, 5]\n\nprint(f\"\\n\\n{t4=}\")\n\nt5 = df.ds_split_in_n_parts_of_length(\n\n size_of_each=8, exact_split=False\n\n) # len of results = [9, 9, 8, 8, 8, 8]\n\nprint(f\"\\n\\n{t5=}\")\n\nt6 = df.ds_split_in_n_parts_of_length(\n\n size_of_each=8, exact_split=True\n\n) # len of results = [8, 8, 8, 8, 8, 8, 2]\n\nprint(f\"\\n\\n{t6=}\")\n\n\n\nt7 = df.PassengerId.ds_split_in_n_parts_of_length(\n\n size_of_each=8, exact_split=True\n\n) # len of results = [8, 8, 8, 8, 8, 8, 2]\n\nprint(f\"\\n\\n{t7=}\")\n\n\n\n\n\n\n\n\n\n\n\nt1=[ PassengerId Survived Pclass ... Fare Cabin Embarked\n\n0 1 0 3 ... 7.2500 NaN S\n\n1 2 1 1 ... 71.2833 C85 C\n\n2 3 1 3 ... 7.9250 NaN S\n\n3 4 1 1 ... 53.1000 C123 S\n\n4 5 0 3 ... 8.0500 NaN S\n\n5 6 0 3 ... 8.4583 NaN Q\n\n6 7 0 1 ... 51.8625 E46 S\n\n7 8 0 3 ... 21.0750 NaN S\n\n8 9 1 3 ... 11.1333 NaN S\n\n9 10 1 2 ... 30.0708 NaN C\n\n[10 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n10 11 1 3 ... 16.7000 G6 S\n\n11 12 1 1 ... 26.5500 C103 S\n\n12 13 0 3 ... 8.0500 NaN S\n\n13 14 0 3 ... 31.2750 NaN S\n\n14 15 0 3 ... 7.8542 NaN S\n\n15 16 1 2 ... 16.0000 NaN S\n\n16 17 0 3 ... 29.1250 NaN Q\n\n17 18 1 2 ... 13.0000 NaN S\n\n18 19 0 3 ... 18.0000 NaN S\n\n19 20 1 3 ... 7.2250 NaN C\n\n[10 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n20 21 0 2 ... 26.0000 NaN S\n\n21 22 1 2 ... 13.0000 D56 S\n\n22 23 1 3 ... 8.0292 NaN Q\n\n23 24 1 1 ... 35.5000 A6 S\n\n24 25 0 3 ... 21.0750 NaN S\n\n25 26 1 3 ... 31.3875 NaN S\n\n26 27 0 3 ... 7.2250 NaN C\n\n27 28 0 1 ... 263.0000 C23 C25 C27 S\n\n28 29 1 3 ... 7.8792 NaN Q\n\n29 30 0 3 ... 7.8958 NaN S\n\n30 31 0 1 ... 27.7208 NaN C\n\n31 32 1 1 ... 146.5208 B78 C\n\n32 33 1 3 ... 7.7500 NaN Q\n\n33 34 0 2 ... 10.5000 NaN S\n\n34 35 0 1 ... 82.1708 NaN C\n\n35 36 0 1 ... 52.0000 NaN S\n\n36 37 1 3 ... 7.2292 NaN C\n\n37 38 0 3 ... 8.0500 NaN S\n\n38 39 0 3 ... 18.0000 NaN S\n\n39 40 1 3 ... 11.2417 NaN C\n\n[20 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n40 41 0 3 ... 9.4750 NaN S\n\n41 42 0 2 ... 21.0000 NaN S\n\n42 43 0 3 ... 7.8958 NaN C\n\n43 44 1 2 ... 41.5792 NaN C\n\n44 45 1 3 ... 7.8792 NaN Q\n\n45 46 0 3 ... 8.0500 NaN S\n\n46 47 0 3 ... 15.5000 NaN Q\n\n47 48 1 3 ... 7.7500 NaN Q\n\n48 49 0 3 ... 21.6792 NaN C\n\n49 50 0 3 ... 17.8000 NaN S\n\n[10 rows x 12 columns]]\n\nt2=[ PassengerId Survived Pclass ... Fare Cabin Embarked\n\n0 1 0 3 ... 7.2500 NaN S\n\n1 2 1 1 ... 71.2833 C85 C\n\n2 3 1 3 ... 7.9250 NaN S\n\n3 4 1 1 ... 53.1000 C123 S\n\n4 5 0 3 ... 8.0500 NaN S\n\n5 6 0 3 ... 8.4583 NaN Q\n\n6 7 0 1 ... 51.8625 E46 S\n\n7 8 0 3 ... 21.0750 NaN S\n\n8 9 1 3 ... 11.1333 NaN S\n\n9 10 1 2 ... 30.0708 NaN C\n\n10 11 1 3 ... 16.7000 G6 S\n\n[11 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n10 11 1 3 ... 16.7000 G6 S\n\n11 12 1 1 ... 26.5500 C103 S\n\n12 13 0 3 ... 8.0500 NaN S\n\n13 14 0 3 ... 31.2750 NaN S\n\n14 15 0 3 ... 7.8542 NaN S\n\n15 16 1 2 ... 16.0000 NaN S\n\n16 17 0 3 ... 29.1250 NaN Q\n\n17 18 1 2 ... 13.0000 NaN S\n\n18 19 0 3 ... 18.0000 NaN S\n\n19 20 1 3 ... 7.2250 NaN C\n\n20 21 0 2 ... 26.0000 NaN S\n\n[11 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n20 21 0 2 ... 26.0000 NaN S\n\n21 22 1 2 ... 13.0000 D56 S\n\n22 23 1 3 ... 8.0292 NaN Q\n\n23 24 1 1 ... 35.5000 A6 S\n\n24 25 0 3 ... 21.0750 NaN S\n\n25 26 1 3 ... 31.3875 NaN S\n\n26 27 0 3 ... 7.2250 NaN C\n\n27 28 0 1 ... 263.0000 C23 C25 C27 S\n\n28 29 1 3 ... 7.8792 NaN Q\n\n29 30 0 3 ... 7.8958 NaN S\n\n30 31 0 1 ... 27.7208 NaN C\n\n31 32 1 1 ... 146.5208 B78 C\n\n32 33 1 3 ... 7.7500 NaN Q\n\n33 34 0 2 ... 10.5000 NaN S\n\n34 35 0 1 ... 82.1708 NaN C\n\n35 36 0 1 ... 52.0000 NaN S\n\n[16 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n35 36 0 1 ... 52.0000 NaN S\n\n36 37 1 3 ... 7.2292 NaN C\n\n37 38 0 3 ... 8.0500 NaN S\n\n38 39 0 3 ... 18.0000 NaN S\n\n39 40 1 3 ... 11.2417 NaN C\n\n40 41 0 3 ... 9.4750 NaN S\n\n41 42 0 2 ... 21.0000 NaN S\n\n42 43 0 3 ... 7.8958 NaN C\n\n43 44 1 2 ... 41.5792 NaN C\n\n44 45 1 3 ... 7.8792 NaN Q\n\n45 46 0 3 ... 8.0500 NaN S\n\n46 47 0 3 ... 15.5000 NaN Q\n\n47 48 1 3 ... 7.7500 NaN Q\n\n48 49 0 3 ... 21.6792 NaN C\n\n49 50 0 3 ... 17.8000 NaN S\n\n[15 rows x 12 columns]]\n\nt3=[ PassengerId Survived Pclass ... Fare Cabin Embarked\n\n0 1 0 3 ... 7.2500 NaN S\n\n1 2 1 1 ... 71.2833 C85 C\n\n2 3 1 3 ... 7.9250 NaN S\n\n3 4 1 1 ... 53.1000 C123 S\n\n4 5 0 3 ... 8.0500 NaN S\n\n5 6 0 3 ... 8.4583 NaN Q\n\n6 7 0 1 ... 51.8625 E46 S\n\n7 8 0 3 ... 21.0750 NaN S\n\n8 9 1 3 ... 11.1333 NaN S\n\n9 10 1 2 ... 30.0708 NaN C\n\n10 11 1 3 ... 16.7000 G6 S\n\n[11 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n25 26 1 3 ... 31.3875 NaN S\n\n26 27 0 3 ... 7.2250 NaN C\n\n27 28 0 1 ... 263.0000 C23 C25 C27 S\n\n28 29 1 3 ... 7.8792 NaN Q\n\n29 30 0 3 ... 7.8958 NaN S\n\n30 31 0 1 ... 27.7208 NaN C\n\n[6 rows x 12 columns]]\n\nt4=[ PassengerId Survived Pclass ... Fare Cabin Embarked\n\n0 1 0 3 ... 7.2500 NaN S\n\n1 2 1 1 ... 71.2833 C85 C\n\n2 3 1 3 ... 7.9250 NaN S\n\n3 4 1 1 ... 53.1000 C123 S\n\n4 5 0 3 ... 8.0500 NaN S\n\n5 6 0 3 ... 8.4583 NaN Q\n\n[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n6 7 0 1 ... 51.8625 E46 S\n\n7 8 0 3 ... 21.0750 NaN S\n\n8 9 1 3 ... 11.1333 NaN S\n\n9 10 1 2 ... 30.0708 NaN C\n\n10 11 1 3 ... 16.7000 G6 S\n\n11 12 1 1 ... 26.5500 C103 S\n\n[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n12 13 0 3 ... 8.0500 NaN S\n\n13 14 0 3 ... 31.2750 NaN S\n\n14 15 0 3 ... 7.8542 NaN S\n\n15 16 1 2 ... 16.0000 NaN S\n\n16 17 0 3 ... 29.1250 NaN Q\n\n17 18 1 2 ... 13.0000 NaN S\n\n[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n18 19 0 3 ... 18.0000 NaN S\n\n19 20 1 3 ... 7.2250 NaN C\n\n20 21 0 2 ... 26.0000 NaN S\n\n21 22 1 2 ... 13.0000 D56 S\n\n22 23 1 3 ... 8.0292 NaN Q\n\n23 24 1 1 ... 35.5000 A6 S\n\n[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n24 25 0 3 ... 21.0750 NaN S\n\n25 26 1 3 ... 31.3875 NaN S\n\n26 27 0 3 ... 7.2250 NaN C\n\n27 28 0 1 ... 263.0000 C23 C25 C27 S\n\n28 29 1 3 ... 7.8792 NaN Q\n\n29 30 0 3 ... 7.8958 NaN S\n\n[6 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n30 31 0 1 ... 27.7208 NaN C\n\n31 32 1 1 ... 146.5208 B78 C\n\n32 33 1 3 ... 7.7500 NaN Q\n\n33 34 0 2 ... 10.5000 NaN S\n\n34 35 0 1 ... 82.1708 NaN C\n\n[5 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n35 36 0 1 ... 52.0000 NaN S\n\n36 37 1 3 ... 7.2292 NaN C\n\n37 38 0 3 ... 8.0500 NaN S\n\n38 39 0 3 ... 18.0000 NaN S\n\n39 40 1 3 ... 11.2417 NaN C\n\n[5 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n40 41 0 3 ... 9.4750 NaN S\n\n41 42 0 2 ... 21.0000 NaN S\n\n42 43 0 3 ... 7.8958 NaN C\n\n43 44 1 2 ... 41.5792 NaN C\n\n44 45 1 3 ... 7.8792 NaN Q\n\n[5 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n45 46 0 3 ... 8.0500 NaN S\n\n46 47 0 3 ... 15.5000 NaN Q\n\n47 48 1 3 ... 7.7500 NaN Q\n\n48 49 0 3 ... 21.6792 NaN C\n\n49 50 0 3 ... 17.8000 NaN S\n\n[5 rows x 12 columns]]\n\nt5=[ PassengerId Survived Pclass ... Fare Cabin Embarked\n\n0 1 0 3 ... 7.2500 NaN S\n\n1 2 1 1 ... 71.2833 C85 C\n\n2 3 1 3 ... 7.9250 NaN S\n\n3 4 1 1 ... 53.1000 C123 S\n\n4 5 0 3 ... 8.0500 NaN S\n\n5 6 0 3 ... 8.4583 NaN Q\n\n6 7 0 1 ... 51.8625 E46 S\n\n7 8 0 3 ... 21.0750 NaN S\n\n8 9 1 3 ... 11.1333 NaN S\n\n[9 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n9 10 1 2 ... 30.0708 NaN C\n\n10 11 1 3 ... 16.7000 G6 S\n\n11 12 1 1 ... 26.5500 C103 S\n\n12 13 0 3 ... 8.0500 NaN S\n\n13 14 0 3 ... 31.2750 NaN S\n\n14 15 0 3 ... 7.8542 NaN S\n\n15 16 1 2 ... 16.0000 NaN S\n\n16 17 0 3 ... 29.1250 NaN Q\n\n17 18 1 2 ... 13.0000 NaN S\n\n[9 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n18 19 0 3 ... 18.0000 NaN S\n\n19 20 1 3 ... 7.2250 NaN C\n\n20 21 0 2 ... 26.0000 NaN S\n\n21 22 1 2 ... 13.0000 D56 S\n\n22 23 1 3 ... 8.0292 NaN Q\n\n23 24 1 1 ... 35.5000 A6 S\n\n24 25 0 3 ... 21.0750 NaN S\n\n25 26 1 3 ... 31.3875 NaN S\n\n[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n26 27 0 3 ... 7.2250 NaN C\n\n27 28 0 1 ... 263.0000 C23 C25 C27 S\n\n28 29 1 3 ... 7.8792 NaN Q\n\n29 30 0 3 ... 7.8958 NaN S\n\n30 31 0 1 ... 27.7208 NaN C\n\n31 32 1 1 ... 146.5208 B78 C\n\n32 33 1 3 ... 7.7500 NaN Q\n\n33 34 0 2 ... 10.5000 NaN S\n\n[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n34 35 0 1 ... 82.1708 NaN C\n\n35 36 0 1 ... 52.0000 NaN S\n\n36 37 1 3 ... 7.2292 NaN C\n\n37 38 0 3 ... 8.0500 NaN S\n\n38 39 0 3 ... 18.0000 NaN S\n\n39 40 1 3 ... 11.2417 NaN C\n\n40 41 0 3 ... 9.4750 NaN S\n\n41 42 0 2 ... 21.0000 NaN S\n\n[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n42 43 0 3 ... 7.8958 NaN C\n\n43 44 1 2 ... 41.5792 NaN C\n\n44 45 1 3 ... 7.8792 NaN Q\n\n45 46 0 3 ... 8.0500 NaN S\n\n46 47 0 3 ... 15.5000 NaN Q\n\n47 48 1 3 ... 7.7500 NaN Q\n\n48 49 0 3 ... 21.6792 NaN C\n\n49 50 0 3 ... 17.8000 NaN S\n\n[8 rows x 12 columns]]\n\nt6=[ PassengerId Survived Pclass ... Fare Cabin Embarked\n\n0 1 0 3 ... 7.2500 NaN S\n\n1 2 1 1 ... 71.2833 C85 C\n\n2 3 1 3 ... 7.9250 NaN S\n\n3 4 1 1 ... 53.1000 C123 S\n\n4 5 0 3 ... 8.0500 NaN S\n\n5 6 0 3 ... 8.4583 NaN Q\n\n6 7 0 1 ... 51.8625 E46 S\n\n7 8 0 3 ... 21.0750 NaN S\n\n[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n8 9 1 3 ... 11.1333 NaN S\n\n9 10 1 2 ... 30.0708 NaN C\n\n10 11 1 3 ... 16.7000 G6 S\n\n11 12 1 1 ... 26.5500 C103 S\n\n12 13 0 3 ... 8.0500 NaN S\n\n13 14 0 3 ... 31.2750 NaN S\n\n14 15 0 3 ... 7.8542 NaN S\n\n15 16 1 2 ... 16.0000 NaN S\n\n[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n16 17 0 3 ... 29.1250 NaN Q\n\n17 18 1 2 ... 13.0000 NaN S\n\n18 19 0 3 ... 18.0000 NaN S\n\n19 20 1 3 ... 7.2250 NaN C\n\n20 21 0 2 ... 26.0000 NaN S\n\n21 22 1 2 ... 13.0000 D56 S\n\n22 23 1 3 ... 8.0292 NaN Q\n\n23 24 1 1 ... 35.5000 A6 S\n\n[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n24 25 0 3 ... 21.0750 NaN S\n\n25 26 1 3 ... 31.3875 NaN S\n\n26 27 0 3 ... 7.2250 NaN C\n\n27 28 0 1 ... 263.0000 C23 C25 C27 S\n\n28 29 1 3 ... 7.8792 NaN Q\n\n29 30 0 3 ... 7.8958 NaN S\n\n30 31 0 1 ... 27.7208 NaN C\n\n31 32 1 1 ... 146.5208 B78 C\n\n[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n32 33 1 3 ... 7.7500 NaN Q\n\n33 34 0 2 ... 10.5000 NaN S\n\n34 35 0 1 ... 82.1708 NaN C\n\n35 36 0 1 ... 52.0000 NaN S\n\n36 37 1 3 ... 7.2292 NaN C\n\n37 38 0 3 ... 8.0500 NaN S\n\n38 39 0 3 ... 18.0000 NaN S\n\n39 40 1 3 ... 11.2417 NaN C\n\n[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n40 41 0 3 ... 9.4750 NaN S\n\n41 42 0 2 ... 21.0000 NaN S\n\n42 43 0 3 ... 7.8958 NaN C\n\n43 44 1 2 ... 41.5792 NaN C\n\n44 45 1 3 ... 7.8792 NaN Q\n\n45 46 0 3 ... 8.0500 NaN S\n\n46 47 0 3 ... 15.5000 NaN Q\n\n47 48 1 3 ... 7.7500 NaN Q\n\n[8 rows x 12 columns], PassengerId Survived Pclass ... Fare Cabin Embarked\n\n48 49 0 3 ... 21.6792 NaN C\n\n49 50 0 3 ... 17.8000 NaN S\n\n[2 rows x 12 columns]]\n\nt7=[0 1\n\n1 2\n\n2 3\n\n3 4\n\n4 5\n\n5 6\n\n6 7\n\n7 8\n\nName: PassengerId, dtype: int64, 8 9\n\n9 10\n\n10 11\n\n11 12\n\n12 13\n\n13 14\n\n14 15\n\n15 16\n\nName: PassengerId, dtype: int64, 16 17\n\n17 18\n\n18 19\n\n19 20\n\n20 21\n\n21 22\n\n22 23\n\n23 24\n\nName: PassengerId, dtype: int64, 24 25\n\n25 26\n\n26 27\n\n27 28\n\n28 29\n\n29 30\n\n30 31\n\n31 32\n\nName: PassengerId, dtype: int64, 32 33\n\n33 34\n\n34 35\n\n35 36\n\n36 37\n\n37 38\n\n38 39\n\n39 40\n\nName: PassengerId, dtype: int64, 40 41\n\n41 42\n\n42 43\n\n43 44\n\n44 45\n\n45 46\n\n46 47\n\n47 48\n\nName: PassengerId, dtype: int64, 48 49\n\n49 50\n\nName: PassengerId, dtype: int64]\n\n\n\n\n\n```\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Several methods to split a pandas DataFrame/Series",
"version": "0.10",
"split_keywords": [
"pandas",
"dataframe",
"split",
"numpy"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "b5b9a970d67d255a1b7b749cc7b90102",
"sha256": "d7cb07f9d5a0ebb3c4318916327dcba448b6e8eff6d93f372aa9c663332abed9"
},
"downloads": -1,
"filename": "a_pandas_ex_split-0.10-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b5b9a970d67d255a1b7b749cc7b90102",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 8478,
"upload_time": "2022-12-19T08:18:26",
"upload_time_iso_8601": "2022-12-19T08:18:26.338776Z",
"url": "https://files.pythonhosted.org/packages/79/5c/4f780f0a295fc2d80568f33e78f6ed5522038d22570fc516b1d33f375e2d/a_pandas_ex_split-0.10-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "6a3bf5a4f13aa862962f060bb8e025dd",
"sha256": "0133140d1a3f31ec74e464d3b84836421de0bfee1c67bed87c9c9baba159d10b"
},
"downloads": -1,
"filename": "a_pandas_ex_split-0.10.tar.gz",
"has_sig": false,
"md5_digest": "6a3bf5a4f13aa862962f060bb8e025dd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 8997,
"upload_time": "2022-12-19T08:18:28",
"upload_time_iso_8601": "2022-12-19T08:18:28.435223Z",
"url": "https://files.pythonhosted.org/packages/b4/a4/17654742fe0cc7394d354aff965677568bbea7d0b46e364783fabbac5586/a_pandas_ex_split-0.10.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-19 08:18:28",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "hansalemaos",
"github_project": "a_pandas_ex_split",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "numpy",
"specs": []
},
{
"name": "pandas",
"specs": []
}
],
"lcname": "a-pandas-ex-split"
}