a-pandas-ex-split


Namea-pandas-ex-split JSON
Version 0.10 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/a_pandas_ex_split
SummarySeveral methods to split a pandas DataFrame/Series
upload_time2022-12-19 08:18:28
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords pandas dataframe split numpy
VCS
bugtrack_url
requirements numpy pandas
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Several methods to split a pandas DataFrame/Series



```python

pip install a-pandas-ex-split

```



```python





from a_pandas_ex_split import pd_add_df_split

import pandas as pd

pd_add_df_split()



df = pd.read_csv(

    "https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"

)

df = df[:50]

t1 = df.ds_iloc_split(splitindex=[10, 20, 40])

print(f"\n\n{t1=}")

t2 = df.ds_loc_split(splitindex=[10, 20, 35])

print(f"\n\n{t2=}")

t3 = df.ds_iloc_split_pairwise(splitindex=[(0, 10), (25, 30)], include_last=True)

print(f"\n\n{t3=}")

t4 = df.ds_split_in_n_parts(n=9)  # len of results = [6, 6, 6, 6, 6, 5, 5, 5, 5]

print(f"\n\n{t4=}")

t5 = df.ds_split_in_n_parts_of_length(

    size_of_each=8, exact_split=False

)  # len of results = [9, 9, 8, 8, 8, 8]

print(f"\n\n{t5=}")

t6 = df.ds_split_in_n_parts_of_length(

    size_of_each=8, exact_split=True

)  # len of results = [8, 8, 8, 8, 8, 8, 2]

print(f"\n\n{t6=}")



t7 = df.PassengerId.ds_split_in_n_parts_of_length(

    size_of_each=8, exact_split=True

)  # len of results = [8, 8, 8, 8, 8, 8, 2]

print(f"\n\n{t7=}")











t1=[   PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

0            1         0       3  ...   7.2500   NaN         S

1            2         1       1  ...  71.2833   C85         C

2            3         1       3  ...   7.9250   NaN         S

3            4         1       1  ...  53.1000  C123         S

4            5         0       3  ...   8.0500   NaN         S

5            6         0       3  ...   8.4583   NaN         Q

6            7         0       1  ...  51.8625   E46         S

7            8         0       3  ...  21.0750   NaN         S

8            9         1       3  ...  11.1333   NaN         S

9           10         1       2  ...  30.0708   NaN         C

[10 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

10           11         1       3  ...  16.7000    G6         S

11           12         1       1  ...  26.5500  C103         S

12           13         0       3  ...   8.0500   NaN         S

13           14         0       3  ...  31.2750   NaN         S

14           15         0       3  ...   7.8542   NaN         S

15           16         1       2  ...  16.0000   NaN         S

16           17         0       3  ...  29.1250   NaN         Q

17           18         1       2  ...  13.0000   NaN         S

18           19         0       3  ...  18.0000   NaN         S

19           20         1       3  ...   7.2250   NaN         C

[10 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked

20           21         0       2  ...   26.0000          NaN         S

21           22         1       2  ...   13.0000          D56         S

22           23         1       3  ...    8.0292          NaN         Q

23           24         1       1  ...   35.5000           A6         S

24           25         0       3  ...   21.0750          NaN         S

25           26         1       3  ...   31.3875          NaN         S

26           27         0       3  ...    7.2250          NaN         C

27           28         0       1  ...  263.0000  C23 C25 C27         S

28           29         1       3  ...    7.8792          NaN         Q

29           30         0       3  ...    7.8958          NaN         S

30           31         0       1  ...   27.7208          NaN         C

31           32         1       1  ...  146.5208          B78         C

32           33         1       3  ...    7.7500          NaN         Q

33           34         0       2  ...   10.5000          NaN         S

34           35         0       1  ...   82.1708          NaN         C

35           36         0       1  ...   52.0000          NaN         S

36           37         1       3  ...    7.2292          NaN         C

37           38         0       3  ...    8.0500          NaN         S

38           39         0       3  ...   18.0000          NaN         S

39           40         1       3  ...   11.2417          NaN         C

[20 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

40           41         0       3  ...   9.4750   NaN         S

41           42         0       2  ...  21.0000   NaN         S

42           43         0       3  ...   7.8958   NaN         C

43           44         1       2  ...  41.5792   NaN         C

44           45         1       3  ...   7.8792   NaN         Q

45           46         0       3  ...   8.0500   NaN         S

46           47         0       3  ...  15.5000   NaN         Q

47           48         1       3  ...   7.7500   NaN         Q

48           49         0       3  ...  21.6792   NaN         C

49           50         0       3  ...  17.8000   NaN         S

[10 rows x 12 columns]]

t2=[    PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

0             1         0       3  ...   7.2500   NaN         S

1             2         1       1  ...  71.2833   C85         C

2             3         1       3  ...   7.9250   NaN         S

3             4         1       1  ...  53.1000  C123         S

4             5         0       3  ...   8.0500   NaN         S

5             6         0       3  ...   8.4583   NaN         Q

6             7         0       1  ...  51.8625   E46         S

7             8         0       3  ...  21.0750   NaN         S

8             9         1       3  ...  11.1333   NaN         S

9            10         1       2  ...  30.0708   NaN         C

10           11         1       3  ...  16.7000    G6         S

[11 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

10           11         1       3  ...  16.7000    G6         S

11           12         1       1  ...  26.5500  C103         S

12           13         0       3  ...   8.0500   NaN         S

13           14         0       3  ...  31.2750   NaN         S

14           15         0       3  ...   7.8542   NaN         S

15           16         1       2  ...  16.0000   NaN         S

16           17         0       3  ...  29.1250   NaN         Q

17           18         1       2  ...  13.0000   NaN         S

18           19         0       3  ...  18.0000   NaN         S

19           20         1       3  ...   7.2250   NaN         C

20           21         0       2  ...  26.0000   NaN         S

[11 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked

20           21         0       2  ...   26.0000          NaN         S

21           22         1       2  ...   13.0000          D56         S

22           23         1       3  ...    8.0292          NaN         Q

23           24         1       1  ...   35.5000           A6         S

24           25         0       3  ...   21.0750          NaN         S

25           26         1       3  ...   31.3875          NaN         S

26           27         0       3  ...    7.2250          NaN         C

27           28         0       1  ...  263.0000  C23 C25 C27         S

28           29         1       3  ...    7.8792          NaN         Q

29           30         0       3  ...    7.8958          NaN         S

30           31         0       1  ...   27.7208          NaN         C

31           32         1       1  ...  146.5208          B78         C

32           33         1       3  ...    7.7500          NaN         Q

33           34         0       2  ...   10.5000          NaN         S

34           35         0       1  ...   82.1708          NaN         C

35           36         0       1  ...   52.0000          NaN         S

[16 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

35           36         0       1  ...  52.0000   NaN         S

36           37         1       3  ...   7.2292   NaN         C

37           38         0       3  ...   8.0500   NaN         S

38           39         0       3  ...  18.0000   NaN         S

39           40         1       3  ...  11.2417   NaN         C

40           41         0       3  ...   9.4750   NaN         S

41           42         0       2  ...  21.0000   NaN         S

42           43         0       3  ...   7.8958   NaN         C

43           44         1       2  ...  41.5792   NaN         C

44           45         1       3  ...   7.8792   NaN         Q

45           46         0       3  ...   8.0500   NaN         S

46           47         0       3  ...  15.5000   NaN         Q

47           48         1       3  ...   7.7500   NaN         Q

48           49         0       3  ...  21.6792   NaN         C

49           50         0       3  ...  17.8000   NaN         S

[15 rows x 12 columns]]

t3=[    PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

0             1         0       3  ...   7.2500   NaN         S

1             2         1       1  ...  71.2833   C85         C

2             3         1       3  ...   7.9250   NaN         S

3             4         1       1  ...  53.1000  C123         S

4             5         0       3  ...   8.0500   NaN         S

5             6         0       3  ...   8.4583   NaN         Q

6             7         0       1  ...  51.8625   E46         S

7             8         0       3  ...  21.0750   NaN         S

8             9         1       3  ...  11.1333   NaN         S

9            10         1       2  ...  30.0708   NaN         C

10           11         1       3  ...  16.7000    G6         S

[11 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked

25           26         1       3  ...   31.3875          NaN         S

26           27         0       3  ...    7.2250          NaN         C

27           28         0       1  ...  263.0000  C23 C25 C27         S

28           29         1       3  ...    7.8792          NaN         Q

29           30         0       3  ...    7.8958          NaN         S

30           31         0       1  ...   27.7208          NaN         C

[6 rows x 12 columns]]

t4=[   PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

0            1         0       3  ...   7.2500   NaN         S

1            2         1       1  ...  71.2833   C85         C

2            3         1       3  ...   7.9250   NaN         S

3            4         1       1  ...  53.1000  C123         S

4            5         0       3  ...   8.0500   NaN         S

5            6         0       3  ...   8.4583   NaN         Q

[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

6             7         0       1  ...  51.8625   E46         S

7             8         0       3  ...  21.0750   NaN         S

8             9         1       3  ...  11.1333   NaN         S

9            10         1       2  ...  30.0708   NaN         C

10           11         1       3  ...  16.7000    G6         S

11           12         1       1  ...  26.5500  C103         S

[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

12           13         0       3  ...   8.0500   NaN         S

13           14         0       3  ...  31.2750   NaN         S

14           15         0       3  ...   7.8542   NaN         S

15           16         1       2  ...  16.0000   NaN         S

16           17         0       3  ...  29.1250   NaN         Q

17           18         1       2  ...  13.0000   NaN         S

[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

18           19         0       3  ...  18.0000   NaN         S

19           20         1       3  ...   7.2250   NaN         C

20           21         0       2  ...  26.0000   NaN         S

21           22         1       2  ...  13.0000   D56         S

22           23         1       3  ...   8.0292   NaN         Q

23           24         1       1  ...  35.5000    A6         S

[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked

24           25         0       3  ...   21.0750          NaN         S

25           26         1       3  ...   31.3875          NaN         S

26           27         0       3  ...    7.2250          NaN         C

27           28         0       1  ...  263.0000  C23 C25 C27         S

28           29         1       3  ...    7.8792          NaN         Q

29           30         0       3  ...    7.8958          NaN         S

[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare Cabin  Embarked

30           31         0       1  ...   27.7208   NaN         C

31           32         1       1  ...  146.5208   B78         C

32           33         1       3  ...    7.7500   NaN         Q

33           34         0       2  ...   10.5000   NaN         S

34           35         0       1  ...   82.1708   NaN         C

[5 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

35           36         0       1  ...  52.0000   NaN         S

36           37         1       3  ...   7.2292   NaN         C

37           38         0       3  ...   8.0500   NaN         S

38           39         0       3  ...  18.0000   NaN         S

39           40         1       3  ...  11.2417   NaN         C

[5 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

40           41         0       3  ...   9.4750   NaN         S

41           42         0       2  ...  21.0000   NaN         S

42           43         0       3  ...   7.8958   NaN         C

43           44         1       2  ...  41.5792   NaN         C

44           45         1       3  ...   7.8792   NaN         Q

[5 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

45           46         0       3  ...   8.0500   NaN         S

46           47         0       3  ...  15.5000   NaN         Q

47           48         1       3  ...   7.7500   NaN         Q

48           49         0       3  ...  21.6792   NaN         C

49           50         0       3  ...  17.8000   NaN         S

[5 rows x 12 columns]]

t5=[   PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

0            1         0       3  ...   7.2500   NaN         S

1            2         1       1  ...  71.2833   C85         C

2            3         1       3  ...   7.9250   NaN         S

3            4         1       1  ...  53.1000  C123         S

4            5         0       3  ...   8.0500   NaN         S

5            6         0       3  ...   8.4583   NaN         Q

6            7         0       1  ...  51.8625   E46         S

7            8         0       3  ...  21.0750   NaN         S

8            9         1       3  ...  11.1333   NaN         S

[9 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

9            10         1       2  ...  30.0708   NaN         C

10           11         1       3  ...  16.7000    G6         S

11           12         1       1  ...  26.5500  C103         S

12           13         0       3  ...   8.0500   NaN         S

13           14         0       3  ...  31.2750   NaN         S

14           15         0       3  ...   7.8542   NaN         S

15           16         1       2  ...  16.0000   NaN         S

16           17         0       3  ...  29.1250   NaN         Q

17           18         1       2  ...  13.0000   NaN         S

[9 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

18           19         0       3  ...  18.0000   NaN         S

19           20         1       3  ...   7.2250   NaN         C

20           21         0       2  ...  26.0000   NaN         S

21           22         1       2  ...  13.0000   D56         S

22           23         1       3  ...   8.0292   NaN         Q

23           24         1       1  ...  35.5000    A6         S

24           25         0       3  ...  21.0750   NaN         S

25           26         1       3  ...  31.3875   NaN         S

[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked

26           27         0       3  ...    7.2250          NaN         C

27           28         0       1  ...  263.0000  C23 C25 C27         S

28           29         1       3  ...    7.8792          NaN         Q

29           30         0       3  ...    7.8958          NaN         S

30           31         0       1  ...   27.7208          NaN         C

31           32         1       1  ...  146.5208          B78         C

32           33         1       3  ...    7.7500          NaN         Q

33           34         0       2  ...   10.5000          NaN         S

[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

34           35         0       1  ...  82.1708   NaN         C

35           36         0       1  ...  52.0000   NaN         S

36           37         1       3  ...   7.2292   NaN         C

37           38         0       3  ...   8.0500   NaN         S

38           39         0       3  ...  18.0000   NaN         S

39           40         1       3  ...  11.2417   NaN         C

40           41         0       3  ...   9.4750   NaN         S

41           42         0       2  ...  21.0000   NaN         S

[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

42           43         0       3  ...   7.8958   NaN         C

43           44         1       2  ...  41.5792   NaN         C

44           45         1       3  ...   7.8792   NaN         Q

45           46         0       3  ...   8.0500   NaN         S

46           47         0       3  ...  15.5000   NaN         Q

47           48         1       3  ...   7.7500   NaN         Q

48           49         0       3  ...  21.6792   NaN         C

49           50         0       3  ...  17.8000   NaN         S

[8 rows x 12 columns]]

t6=[   PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

0            1         0       3  ...   7.2500   NaN         S

1            2         1       1  ...  71.2833   C85         C

2            3         1       3  ...   7.9250   NaN         S

3            4         1       1  ...  53.1000  C123         S

4            5         0       3  ...   8.0500   NaN         S

5            6         0       3  ...   8.4583   NaN         Q

6            7         0       1  ...  51.8625   E46         S

7            8         0       3  ...  21.0750   NaN         S

[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

8             9         1       3  ...  11.1333   NaN         S

9            10         1       2  ...  30.0708   NaN         C

10           11         1       3  ...  16.7000    G6         S

11           12         1       1  ...  26.5500  C103         S

12           13         0       3  ...   8.0500   NaN         S

13           14         0       3  ...  31.2750   NaN         S

14           15         0       3  ...   7.8542   NaN         S

15           16         1       2  ...  16.0000   NaN         S

[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

16           17         0       3  ...  29.1250   NaN         Q

17           18         1       2  ...  13.0000   NaN         S

18           19         0       3  ...  18.0000   NaN         S

19           20         1       3  ...   7.2250   NaN         C

20           21         0       2  ...  26.0000   NaN         S

21           22         1       2  ...  13.0000   D56         S

22           23         1       3  ...   8.0292   NaN         Q

23           24         1       1  ...  35.5000    A6         S

[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked

24           25         0       3  ...   21.0750          NaN         S

25           26         1       3  ...   31.3875          NaN         S

26           27         0       3  ...    7.2250          NaN         C

27           28         0       1  ...  263.0000  C23 C25 C27         S

28           29         1       3  ...    7.8792          NaN         Q

29           30         0       3  ...    7.8958          NaN         S

30           31         0       1  ...   27.7208          NaN         C

31           32         1       1  ...  146.5208          B78         C

[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

32           33         1       3  ...   7.7500   NaN         Q

33           34         0       2  ...  10.5000   NaN         S

34           35         0       1  ...  82.1708   NaN         C

35           36         0       1  ...  52.0000   NaN         S

36           37         1       3  ...   7.2292   NaN         C

37           38         0       3  ...   8.0500   NaN         S

38           39         0       3  ...  18.0000   NaN         S

39           40         1       3  ...  11.2417   NaN         C

[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

40           41         0       3  ...   9.4750   NaN         S

41           42         0       2  ...  21.0000   NaN         S

42           43         0       3  ...   7.8958   NaN         C

43           44         1       2  ...  41.5792   NaN         C

44           45         1       3  ...   7.8792   NaN         Q

45           46         0       3  ...   8.0500   NaN         S

46           47         0       3  ...  15.5000   NaN         Q

47           48         1       3  ...   7.7500   NaN         Q

[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked

48           49         0       3  ...  21.6792   NaN         C

49           50         0       3  ...  17.8000   NaN         S

[2 rows x 12 columns]]

t7=[0    1

1    2

2    3

3    4

4    5

5    6

6    7

7    8

Name: PassengerId, dtype: int64, 8      9

9     10

10    11

11    12

12    13

13    14

14    15

15    16

Name: PassengerId, dtype: int64, 16    17

17    18

18    19

19    20

20    21

21    22

22    23

23    24

Name: PassengerId, dtype: int64, 24    25

25    26

26    27

27    28

28    29

29    30

30    31

31    32

Name: PassengerId, dtype: int64, 32    33

33    34

34    35

35    36

36    37

37    38

38    39

39    40

Name: PassengerId, dtype: int64, 40    41

41    42

42    43

43    44

44    45

45    46

46    47

47    48

Name: PassengerId, dtype: int64, 48    49

49    50

Name: PassengerId, dtype: int64]





```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/a_pandas_ex_split",
    "name": "a-pandas-ex-split",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "pandas,DataFrame,split,numpy",
    "author": "Johannes Fischer",
    "author_email": "<aulasparticularesdealemaosp@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/b4/a4/17654742fe0cc7394d354aff965677568bbea7d0b46e364783fabbac5586/a_pandas_ex_split-0.10.tar.gz",
    "platform": null,
    "description": "\n# Several methods to split a pandas DataFrame/Series\n\n\n\n```python\n\npip install a-pandas-ex-split\n\n```\n\n\n\n```python\n\n\n\n\n\nfrom a_pandas_ex_split import pd_add_df_split\n\nimport pandas as pd\n\npd_add_df_split()\n\n\n\ndf = pd.read_csv(\n\n    \"https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv\"\n\n)\n\ndf = df[:50]\n\nt1 = df.ds_iloc_split(splitindex=[10, 20, 40])\n\nprint(f\"\\n\\n{t1=}\")\n\nt2 = df.ds_loc_split(splitindex=[10, 20, 35])\n\nprint(f\"\\n\\n{t2=}\")\n\nt3 = df.ds_iloc_split_pairwise(splitindex=[(0, 10), (25, 30)], include_last=True)\n\nprint(f\"\\n\\n{t3=}\")\n\nt4 = df.ds_split_in_n_parts(n=9)  # len of results = [6, 6, 6, 6, 6, 5, 5, 5, 5]\n\nprint(f\"\\n\\n{t4=}\")\n\nt5 = df.ds_split_in_n_parts_of_length(\n\n    size_of_each=8, exact_split=False\n\n)  # len of results = [9, 9, 8, 8, 8, 8]\n\nprint(f\"\\n\\n{t5=}\")\n\nt6 = df.ds_split_in_n_parts_of_length(\n\n    size_of_each=8, exact_split=True\n\n)  # len of results = [8, 8, 8, 8, 8, 8, 2]\n\nprint(f\"\\n\\n{t6=}\")\n\n\n\nt7 = df.PassengerId.ds_split_in_n_parts_of_length(\n\n    size_of_each=8, exact_split=True\n\n)  # len of results = [8, 8, 8, 8, 8, 8, 2]\n\nprint(f\"\\n\\n{t7=}\")\n\n\n\n\n\n\n\n\n\n\n\nt1=[   PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n0            1         0       3  ...   7.2500   NaN         S\n\n1            2         1       1  ...  71.2833   C85         C\n\n2            3         1       3  ...   7.9250   NaN         S\n\n3            4         1       1  ...  53.1000  C123         S\n\n4            5         0       3  ...   8.0500   NaN         S\n\n5            6         0       3  ...   8.4583   NaN         Q\n\n6            7         0       1  ...  51.8625   E46         S\n\n7            8         0       3  ...  21.0750   NaN         S\n\n8            9         1       3  ...  11.1333   NaN         S\n\n9           10         1       2  ...  30.0708   NaN         C\n\n[10 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n10           11         1       3  ...  16.7000    G6         S\n\n11           12         1       1  ...  26.5500  C103         S\n\n12           13         0       3  ...   8.0500   NaN         S\n\n13           14         0       3  ...  31.2750   NaN         S\n\n14           15         0       3  ...   7.8542   NaN         S\n\n15           16         1       2  ...  16.0000   NaN         S\n\n16           17         0       3  ...  29.1250   NaN         Q\n\n17           18         1       2  ...  13.0000   NaN         S\n\n18           19         0       3  ...  18.0000   NaN         S\n\n19           20         1       3  ...   7.2250   NaN         C\n\n[10 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked\n\n20           21         0       2  ...   26.0000          NaN         S\n\n21           22         1       2  ...   13.0000          D56         S\n\n22           23         1       3  ...    8.0292          NaN         Q\n\n23           24         1       1  ...   35.5000           A6         S\n\n24           25         0       3  ...   21.0750          NaN         S\n\n25           26         1       3  ...   31.3875          NaN         S\n\n26           27         0       3  ...    7.2250          NaN         C\n\n27           28         0       1  ...  263.0000  C23 C25 C27         S\n\n28           29         1       3  ...    7.8792          NaN         Q\n\n29           30         0       3  ...    7.8958          NaN         S\n\n30           31         0       1  ...   27.7208          NaN         C\n\n31           32         1       1  ...  146.5208          B78         C\n\n32           33         1       3  ...    7.7500          NaN         Q\n\n33           34         0       2  ...   10.5000          NaN         S\n\n34           35         0       1  ...   82.1708          NaN         C\n\n35           36         0       1  ...   52.0000          NaN         S\n\n36           37         1       3  ...    7.2292          NaN         C\n\n37           38         0       3  ...    8.0500          NaN         S\n\n38           39         0       3  ...   18.0000          NaN         S\n\n39           40         1       3  ...   11.2417          NaN         C\n\n[20 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n40           41         0       3  ...   9.4750   NaN         S\n\n41           42         0       2  ...  21.0000   NaN         S\n\n42           43         0       3  ...   7.8958   NaN         C\n\n43           44         1       2  ...  41.5792   NaN         C\n\n44           45         1       3  ...   7.8792   NaN         Q\n\n45           46         0       3  ...   8.0500   NaN         S\n\n46           47         0       3  ...  15.5000   NaN         Q\n\n47           48         1       3  ...   7.7500   NaN         Q\n\n48           49         0       3  ...  21.6792   NaN         C\n\n49           50         0       3  ...  17.8000   NaN         S\n\n[10 rows x 12 columns]]\n\nt2=[    PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n0             1         0       3  ...   7.2500   NaN         S\n\n1             2         1       1  ...  71.2833   C85         C\n\n2             3         1       3  ...   7.9250   NaN         S\n\n3             4         1       1  ...  53.1000  C123         S\n\n4             5         0       3  ...   8.0500   NaN         S\n\n5             6         0       3  ...   8.4583   NaN         Q\n\n6             7         0       1  ...  51.8625   E46         S\n\n7             8         0       3  ...  21.0750   NaN         S\n\n8             9         1       3  ...  11.1333   NaN         S\n\n9            10         1       2  ...  30.0708   NaN         C\n\n10           11         1       3  ...  16.7000    G6         S\n\n[11 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n10           11         1       3  ...  16.7000    G6         S\n\n11           12         1       1  ...  26.5500  C103         S\n\n12           13         0       3  ...   8.0500   NaN         S\n\n13           14         0       3  ...  31.2750   NaN         S\n\n14           15         0       3  ...   7.8542   NaN         S\n\n15           16         1       2  ...  16.0000   NaN         S\n\n16           17         0       3  ...  29.1250   NaN         Q\n\n17           18         1       2  ...  13.0000   NaN         S\n\n18           19         0       3  ...  18.0000   NaN         S\n\n19           20         1       3  ...   7.2250   NaN         C\n\n20           21         0       2  ...  26.0000   NaN         S\n\n[11 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked\n\n20           21         0       2  ...   26.0000          NaN         S\n\n21           22         1       2  ...   13.0000          D56         S\n\n22           23         1       3  ...    8.0292          NaN         Q\n\n23           24         1       1  ...   35.5000           A6         S\n\n24           25         0       3  ...   21.0750          NaN         S\n\n25           26         1       3  ...   31.3875          NaN         S\n\n26           27         0       3  ...    7.2250          NaN         C\n\n27           28         0       1  ...  263.0000  C23 C25 C27         S\n\n28           29         1       3  ...    7.8792          NaN         Q\n\n29           30         0       3  ...    7.8958          NaN         S\n\n30           31         0       1  ...   27.7208          NaN         C\n\n31           32         1       1  ...  146.5208          B78         C\n\n32           33         1       3  ...    7.7500          NaN         Q\n\n33           34         0       2  ...   10.5000          NaN         S\n\n34           35         0       1  ...   82.1708          NaN         C\n\n35           36         0       1  ...   52.0000          NaN         S\n\n[16 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n35           36         0       1  ...  52.0000   NaN         S\n\n36           37         1       3  ...   7.2292   NaN         C\n\n37           38         0       3  ...   8.0500   NaN         S\n\n38           39         0       3  ...  18.0000   NaN         S\n\n39           40         1       3  ...  11.2417   NaN         C\n\n40           41         0       3  ...   9.4750   NaN         S\n\n41           42         0       2  ...  21.0000   NaN         S\n\n42           43         0       3  ...   7.8958   NaN         C\n\n43           44         1       2  ...  41.5792   NaN         C\n\n44           45         1       3  ...   7.8792   NaN         Q\n\n45           46         0       3  ...   8.0500   NaN         S\n\n46           47         0       3  ...  15.5000   NaN         Q\n\n47           48         1       3  ...   7.7500   NaN         Q\n\n48           49         0       3  ...  21.6792   NaN         C\n\n49           50         0       3  ...  17.8000   NaN         S\n\n[15 rows x 12 columns]]\n\nt3=[    PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n0             1         0       3  ...   7.2500   NaN         S\n\n1             2         1       1  ...  71.2833   C85         C\n\n2             3         1       3  ...   7.9250   NaN         S\n\n3             4         1       1  ...  53.1000  C123         S\n\n4             5         0       3  ...   8.0500   NaN         S\n\n5             6         0       3  ...   8.4583   NaN         Q\n\n6             7         0       1  ...  51.8625   E46         S\n\n7             8         0       3  ...  21.0750   NaN         S\n\n8             9         1       3  ...  11.1333   NaN         S\n\n9            10         1       2  ...  30.0708   NaN         C\n\n10           11         1       3  ...  16.7000    G6         S\n\n[11 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked\n\n25           26         1       3  ...   31.3875          NaN         S\n\n26           27         0       3  ...    7.2250          NaN         C\n\n27           28         0       1  ...  263.0000  C23 C25 C27         S\n\n28           29         1       3  ...    7.8792          NaN         Q\n\n29           30         0       3  ...    7.8958          NaN         S\n\n30           31         0       1  ...   27.7208          NaN         C\n\n[6 rows x 12 columns]]\n\nt4=[   PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n0            1         0       3  ...   7.2500   NaN         S\n\n1            2         1       1  ...  71.2833   C85         C\n\n2            3         1       3  ...   7.9250   NaN         S\n\n3            4         1       1  ...  53.1000  C123         S\n\n4            5         0       3  ...   8.0500   NaN         S\n\n5            6         0       3  ...   8.4583   NaN         Q\n\n[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n6             7         0       1  ...  51.8625   E46         S\n\n7             8         0       3  ...  21.0750   NaN         S\n\n8             9         1       3  ...  11.1333   NaN         S\n\n9            10         1       2  ...  30.0708   NaN         C\n\n10           11         1       3  ...  16.7000    G6         S\n\n11           12         1       1  ...  26.5500  C103         S\n\n[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n12           13         0       3  ...   8.0500   NaN         S\n\n13           14         0       3  ...  31.2750   NaN         S\n\n14           15         0       3  ...   7.8542   NaN         S\n\n15           16         1       2  ...  16.0000   NaN         S\n\n16           17         0       3  ...  29.1250   NaN         Q\n\n17           18         1       2  ...  13.0000   NaN         S\n\n[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n18           19         0       3  ...  18.0000   NaN         S\n\n19           20         1       3  ...   7.2250   NaN         C\n\n20           21         0       2  ...  26.0000   NaN         S\n\n21           22         1       2  ...  13.0000   D56         S\n\n22           23         1       3  ...   8.0292   NaN         Q\n\n23           24         1       1  ...  35.5000    A6         S\n\n[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked\n\n24           25         0       3  ...   21.0750          NaN         S\n\n25           26         1       3  ...   31.3875          NaN         S\n\n26           27         0       3  ...    7.2250          NaN         C\n\n27           28         0       1  ...  263.0000  C23 C25 C27         S\n\n28           29         1       3  ...    7.8792          NaN         Q\n\n29           30         0       3  ...    7.8958          NaN         S\n\n[6 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare Cabin  Embarked\n\n30           31         0       1  ...   27.7208   NaN         C\n\n31           32         1       1  ...  146.5208   B78         C\n\n32           33         1       3  ...    7.7500   NaN         Q\n\n33           34         0       2  ...   10.5000   NaN         S\n\n34           35         0       1  ...   82.1708   NaN         C\n\n[5 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n35           36         0       1  ...  52.0000   NaN         S\n\n36           37         1       3  ...   7.2292   NaN         C\n\n37           38         0       3  ...   8.0500   NaN         S\n\n38           39         0       3  ...  18.0000   NaN         S\n\n39           40         1       3  ...  11.2417   NaN         C\n\n[5 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n40           41         0       3  ...   9.4750   NaN         S\n\n41           42         0       2  ...  21.0000   NaN         S\n\n42           43         0       3  ...   7.8958   NaN         C\n\n43           44         1       2  ...  41.5792   NaN         C\n\n44           45         1       3  ...   7.8792   NaN         Q\n\n[5 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n45           46         0       3  ...   8.0500   NaN         S\n\n46           47         0       3  ...  15.5000   NaN         Q\n\n47           48         1       3  ...   7.7500   NaN         Q\n\n48           49         0       3  ...  21.6792   NaN         C\n\n49           50         0       3  ...  17.8000   NaN         S\n\n[5 rows x 12 columns]]\n\nt5=[   PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n0            1         0       3  ...   7.2500   NaN         S\n\n1            2         1       1  ...  71.2833   C85         C\n\n2            3         1       3  ...   7.9250   NaN         S\n\n3            4         1       1  ...  53.1000  C123         S\n\n4            5         0       3  ...   8.0500   NaN         S\n\n5            6         0       3  ...   8.4583   NaN         Q\n\n6            7         0       1  ...  51.8625   E46         S\n\n7            8         0       3  ...  21.0750   NaN         S\n\n8            9         1       3  ...  11.1333   NaN         S\n\n[9 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n9            10         1       2  ...  30.0708   NaN         C\n\n10           11         1       3  ...  16.7000    G6         S\n\n11           12         1       1  ...  26.5500  C103         S\n\n12           13         0       3  ...   8.0500   NaN         S\n\n13           14         0       3  ...  31.2750   NaN         S\n\n14           15         0       3  ...   7.8542   NaN         S\n\n15           16         1       2  ...  16.0000   NaN         S\n\n16           17         0       3  ...  29.1250   NaN         Q\n\n17           18         1       2  ...  13.0000   NaN         S\n\n[9 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n18           19         0       3  ...  18.0000   NaN         S\n\n19           20         1       3  ...   7.2250   NaN         C\n\n20           21         0       2  ...  26.0000   NaN         S\n\n21           22         1       2  ...  13.0000   D56         S\n\n22           23         1       3  ...   8.0292   NaN         Q\n\n23           24         1       1  ...  35.5000    A6         S\n\n24           25         0       3  ...  21.0750   NaN         S\n\n25           26         1       3  ...  31.3875   NaN         S\n\n[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked\n\n26           27         0       3  ...    7.2250          NaN         C\n\n27           28         0       1  ...  263.0000  C23 C25 C27         S\n\n28           29         1       3  ...    7.8792          NaN         Q\n\n29           30         0       3  ...    7.8958          NaN         S\n\n30           31         0       1  ...   27.7208          NaN         C\n\n31           32         1       1  ...  146.5208          B78         C\n\n32           33         1       3  ...    7.7500          NaN         Q\n\n33           34         0       2  ...   10.5000          NaN         S\n\n[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n34           35         0       1  ...  82.1708   NaN         C\n\n35           36         0       1  ...  52.0000   NaN         S\n\n36           37         1       3  ...   7.2292   NaN         C\n\n37           38         0       3  ...   8.0500   NaN         S\n\n38           39         0       3  ...  18.0000   NaN         S\n\n39           40         1       3  ...  11.2417   NaN         C\n\n40           41         0       3  ...   9.4750   NaN         S\n\n41           42         0       2  ...  21.0000   NaN         S\n\n[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n42           43         0       3  ...   7.8958   NaN         C\n\n43           44         1       2  ...  41.5792   NaN         C\n\n44           45         1       3  ...   7.8792   NaN         Q\n\n45           46         0       3  ...   8.0500   NaN         S\n\n46           47         0       3  ...  15.5000   NaN         Q\n\n47           48         1       3  ...   7.7500   NaN         Q\n\n48           49         0       3  ...  21.6792   NaN         C\n\n49           50         0       3  ...  17.8000   NaN         S\n\n[8 rows x 12 columns]]\n\nt6=[   PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n0            1         0       3  ...   7.2500   NaN         S\n\n1            2         1       1  ...  71.2833   C85         C\n\n2            3         1       3  ...   7.9250   NaN         S\n\n3            4         1       1  ...  53.1000  C123         S\n\n4            5         0       3  ...   8.0500   NaN         S\n\n5            6         0       3  ...   8.4583   NaN         Q\n\n6            7         0       1  ...  51.8625   E46         S\n\n7            8         0       3  ...  21.0750   NaN         S\n\n[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n8             9         1       3  ...  11.1333   NaN         S\n\n9            10         1       2  ...  30.0708   NaN         C\n\n10           11         1       3  ...  16.7000    G6         S\n\n11           12         1       1  ...  26.5500  C103         S\n\n12           13         0       3  ...   8.0500   NaN         S\n\n13           14         0       3  ...  31.2750   NaN         S\n\n14           15         0       3  ...   7.8542   NaN         S\n\n15           16         1       2  ...  16.0000   NaN         S\n\n[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n16           17         0       3  ...  29.1250   NaN         Q\n\n17           18         1       2  ...  13.0000   NaN         S\n\n18           19         0       3  ...  18.0000   NaN         S\n\n19           20         1       3  ...   7.2250   NaN         C\n\n20           21         0       2  ...  26.0000   NaN         S\n\n21           22         1       2  ...  13.0000   D56         S\n\n22           23         1       3  ...   8.0292   NaN         Q\n\n23           24         1       1  ...  35.5000    A6         S\n\n[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...      Fare        Cabin  Embarked\n\n24           25         0       3  ...   21.0750          NaN         S\n\n25           26         1       3  ...   31.3875          NaN         S\n\n26           27         0       3  ...    7.2250          NaN         C\n\n27           28         0       1  ...  263.0000  C23 C25 C27         S\n\n28           29         1       3  ...    7.8792          NaN         Q\n\n29           30         0       3  ...    7.8958          NaN         S\n\n30           31         0       1  ...   27.7208          NaN         C\n\n31           32         1       1  ...  146.5208          B78         C\n\n[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n32           33         1       3  ...   7.7500   NaN         Q\n\n33           34         0       2  ...  10.5000   NaN         S\n\n34           35         0       1  ...  82.1708   NaN         C\n\n35           36         0       1  ...  52.0000   NaN         S\n\n36           37         1       3  ...   7.2292   NaN         C\n\n37           38         0       3  ...   8.0500   NaN         S\n\n38           39         0       3  ...  18.0000   NaN         S\n\n39           40         1       3  ...  11.2417   NaN         C\n\n[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n40           41         0       3  ...   9.4750   NaN         S\n\n41           42         0       2  ...  21.0000   NaN         S\n\n42           43         0       3  ...   7.8958   NaN         C\n\n43           44         1       2  ...  41.5792   NaN         C\n\n44           45         1       3  ...   7.8792   NaN         Q\n\n45           46         0       3  ...   8.0500   NaN         S\n\n46           47         0       3  ...  15.5000   NaN         Q\n\n47           48         1       3  ...   7.7500   NaN         Q\n\n[8 rows x 12 columns],     PassengerId  Survived  Pclass  ...     Fare Cabin  Embarked\n\n48           49         0       3  ...  21.6792   NaN         C\n\n49           50         0       3  ...  17.8000   NaN         S\n\n[2 rows x 12 columns]]\n\nt7=[0    1\n\n1    2\n\n2    3\n\n3    4\n\n4    5\n\n5    6\n\n6    7\n\n7    8\n\nName: PassengerId, dtype: int64, 8      9\n\n9     10\n\n10    11\n\n11    12\n\n12    13\n\n13    14\n\n14    15\n\n15    16\n\nName: PassengerId, dtype: int64, 16    17\n\n17    18\n\n18    19\n\n19    20\n\n20    21\n\n21    22\n\n22    23\n\n23    24\n\nName: PassengerId, dtype: int64, 24    25\n\n25    26\n\n26    27\n\n27    28\n\n28    29\n\n29    30\n\n30    31\n\n31    32\n\nName: PassengerId, dtype: int64, 32    33\n\n33    34\n\n34    35\n\n35    36\n\n36    37\n\n37    38\n\n38    39\n\n39    40\n\nName: PassengerId, dtype: int64, 40    41\n\n41    42\n\n42    43\n\n43    44\n\n44    45\n\n45    46\n\n46    47\n\n47    48\n\nName: PassengerId, dtype: int64, 48    49\n\n49    50\n\nName: PassengerId, dtype: int64]\n\n\n\n\n\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Several methods to split a pandas DataFrame/Series",
    "version": "0.10",
    "split_keywords": [
        "pandas",
        "dataframe",
        "split",
        "numpy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "b5b9a970d67d255a1b7b749cc7b90102",
                "sha256": "d7cb07f9d5a0ebb3c4318916327dcba448b6e8eff6d93f372aa9c663332abed9"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_split-0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b5b9a970d67d255a1b7b749cc7b90102",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 8478,
            "upload_time": "2022-12-19T08:18:26",
            "upload_time_iso_8601": "2022-12-19T08:18:26.338776Z",
            "url": "https://files.pythonhosted.org/packages/79/5c/4f780f0a295fc2d80568f33e78f6ed5522038d22570fc516b1d33f375e2d/a_pandas_ex_split-0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "6a3bf5a4f13aa862962f060bb8e025dd",
                "sha256": "0133140d1a3f31ec74e464d3b84836421de0bfee1c67bed87c9c9baba159d10b"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_split-0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "6a3bf5a4f13aa862962f060bb8e025dd",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8997,
            "upload_time": "2022-12-19T08:18:28",
            "upload_time_iso_8601": "2022-12-19T08:18:28.435223Z",
            "url": "https://files.pythonhosted.org/packages/b4/a4/17654742fe0cc7394d354aff965677568bbea7d0b46e364783fabbac5586/a_pandas_ex_split-0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-19 08:18:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hansalemaos",
    "github_project": "a_pandas_ex_split",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        }
    ],
    "lcname": "a-pandas-ex-split"
}
        
Elapsed time: 0.02986s