aaanalysis


Nameaaanalysis JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://aaanalysis.readthedocs.io
SummaryPython framework for interpretable protein prediction
upload_time2024-07-01 22:37:21
maintainerNone
docs_urlNone
authorStephan Breimann
requires_python<4.0,>=3.9
licenseBSD-3-Clause
keywords protein prediction bioinformatics machine learning interpretable ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Welcome to the AAanalysis documentation!
========================================
..
    Developer Notes:
    Please make sure that badges in badges.rst (Read The Docs)
    and README.rst (GitHub) are the same.

.. Group 1: Package badges
.. |PyPI Status| image:: https://img.shields.io/pypi/status/aaanalysis.svg
   :target: https://pypi.org/project/aaanalysis/
   :alt: PyPI - Status

.. |PyPI Version| image:: https://img.shields.io/pypi/v/aaanalysis.svg
   :target: https://pypi.python.org/pypi/aaanalysis
   :alt: PyPI - Package Version

.. |Supported Python Versions| image:: https://img.shields.io/pypi/pyversions/aaanalysis.svg
   :target: https://pypi.python.org/pypi/aaanalysis
   :alt: Supported Python Versions

.. |Downloads| image:: https://pepy.tech/badge/aaanalysis
   :target: https://pepy.tech/project/aaanalysis
   :alt: Downloads

.. |License| image:: https://img.shields.io/github/license/breimanntools/aaanalysis.svg
   :target: https://github.com/breimanntools/aaanalysis/blob/master/LICENSE
   :alt: License

.. Group 2: Testing badges
.. |Unit Tests| image:: https://github.com/breimanntools/aaanalysis/actions/workflows/main.yml/badge.svg
   :target: https://github.com/breimanntools/aaanalysis/actions/workflows/main.yml
   :alt: CI/CD Pipeline

.. |CodeQL| image:: https://github.com/breimanntools/aaanalysis/actions/workflows/codeql_analysis.yml/badge.svg
   :target: https://github.com/breimanntools/aaanalysis/actions/workflows/codeql_analysis.yml
   :alt: CodeQL

.. |Codecov| image:: https://codecov.io/gh/breimanntools/aaanalysis/branch/master/graph/badge.svg
   :target: https://codecov.io/gh/breimanntools/aaanalysis
   :alt: Codecov

.. |Documentation Status| image:: https://readthedocs.org/projects/aaanalysis/badge/?version=latest
   :target: https://aaanalysis.readthedocs.io/en/latest/?badge=latest
   :alt: Documentation Status


.. Group 3: Potential badges for future
.. |Conda Version| image:: https://anaconda.org/conda-forge/aaanalysis/badges/version.svg
   :target: https://anaconda.org/conda-forge/aaanalysis
   :alt: Conda - Package Version


..
    Missing badges
    |Conda Version|

.. list-table::
   :widths: 20 80
   :header-rows: 1

   * - **Package**
     - |PyPI Status| |PyPI Version| |Supported Python Versions| |Downloads| |License|
   * - **Testing**
     - |Unit Tests| |CodeQL| |Codecov| |Documentation Status|

**AAanalysis** (Amino Acid analysis) is a Python framework for interpretable sequence-based protein prediction.
Its foundation are the following algorithms:

- **CPP**: Comparative Physicochemical Profiling, a feature engineering algorithm comparing two sets of protein
  sequences to identify the set of most distinctive features.
- **dPULearn**: deterministic Positive-Unlabeled (PU) Learning algorithm to enable training on
  unbalanced and small datasets.
- **AAclust**: k-optimized clustering wrapper framework to select redundancy-reduced sets of numerical scales
  (e.g., amino acid scales).

In addition, AAanalysis provide functions for loading various protein benchmark datasets, amino acid scales,
and their two-level classification (**AAontology**). We combined **CPP** with the explainable
AI  `SHAP <https://shap.readthedocs.io/en/latest/index.html>`_ framework to explain sample level predictions with
single-residue resolution.

If you are looking to make publication-ready plots with a view lines of code, see our
`Plotting Prelude <https://aaanalysis.readthedocs.io/en/latest/generated/plotting_prelude.html>`_.


You can find the official documentation at `Read the Docs <https://aaanalysis.readthedocs.io/en/latest/>`_.

Install
=======
**AAanalysis** can be installed from `PyPi <https://pypi.org/project/aaanalysis>`_:

.. code-block:: bash

   pip install aaanalysis

For extended features, including our explainable AI module, please use the 'professional' version:

.. code-block:: bash

   pip install aaanalysis[pro]

Contributing
============
We appreciate bug reports, feature requests, or updates on documentation and code. For details, please refer to
`Contributing Guidelines <CONTRIBUTING.rst>`_. These include specifics about AAanalysis and also notes on Test
Guided Development (TGD) using ChatGPT. For further questions or suggestions, please email stephanbreimann@gmail.com.

Citations
=========
If you use AAanalysis in your work, please cite the respective publication as follows:

**AAclust**:
   Breimann and Frishman (2024a),
   *AAclust: k-optimized clustering for selecting redundancy-reduced sets of amino acid scales*,
   `bioRxiv <https://www.biorxiv.org/content/10.1101/2024.02.04.578800v1>`__.

**AAontology**:
   Breimann *et al.* (2024b),
   *AAontology: An ontology of amino acid scales for interpretable machine learning*,
   `bioRxiv <https://www.biorxiv.org/content/10.1101/2023.08.03.551768v1>`__.

**CPP**:
   Breimann and Kamp *et al.* (2024c),
   *Charting γ-secretase substrates by explainable AI*, .. # Link if available

**dPULearn**:
   Breimann and Kamp *et al.* (2024c),
   *Charting γ-secretase substrates by explainable AI*, .. # Link if available

            

Raw data

            {
    "_id": null,
    "home_page": "https://aaanalysis.readthedocs.io",
    "name": "aaanalysis",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "protein, prediction, bioinformatics, machine learning, interpretable AI",
    "author": "Stephan Breimann",
    "author_email": "stephanbreimann@gmail.de",
    "download_url": "https://files.pythonhosted.org/packages/84/eb/560a4451a9e2f503fa59a0b2e9999072babca6a723d641a67c5807a9bc63/aaanalysis-1.0.0.tar.gz",
    "platform": null,
    "description": "Welcome to the AAanalysis documentation!\n========================================\n..\n    Developer Notes:\n    Please make sure that badges in badges.rst (Read The Docs)\n    and README.rst (GitHub) are the same.\n\n.. Group 1: Package badges\n.. |PyPI Status| image:: https://img.shields.io/pypi/status/aaanalysis.svg\n   :target: https://pypi.org/project/aaanalysis/\n   :alt: PyPI - Status\n\n.. |PyPI Version| image:: https://img.shields.io/pypi/v/aaanalysis.svg\n   :target: https://pypi.python.org/pypi/aaanalysis\n   :alt: PyPI - Package Version\n\n.. |Supported Python Versions| image:: https://img.shields.io/pypi/pyversions/aaanalysis.svg\n   :target: https://pypi.python.org/pypi/aaanalysis\n   :alt: Supported Python Versions\n\n.. |Downloads| image:: https://pepy.tech/badge/aaanalysis\n   :target: https://pepy.tech/project/aaanalysis\n   :alt: Downloads\n\n.. |License| image:: https://img.shields.io/github/license/breimanntools/aaanalysis.svg\n   :target: https://github.com/breimanntools/aaanalysis/blob/master/LICENSE\n   :alt: License\n\n.. Group 2: Testing badges\n.. |Unit Tests| image:: https://github.com/breimanntools/aaanalysis/actions/workflows/main.yml/badge.svg\n   :target: https://github.com/breimanntools/aaanalysis/actions/workflows/main.yml\n   :alt: CI/CD Pipeline\n\n.. |CodeQL| image:: https://github.com/breimanntools/aaanalysis/actions/workflows/codeql_analysis.yml/badge.svg\n   :target: https://github.com/breimanntools/aaanalysis/actions/workflows/codeql_analysis.yml\n   :alt: CodeQL\n\n.. |Codecov| image:: https://codecov.io/gh/breimanntools/aaanalysis/branch/master/graph/badge.svg\n   :target: https://codecov.io/gh/breimanntools/aaanalysis\n   :alt: Codecov\n\n.. |Documentation Status| image:: https://readthedocs.org/projects/aaanalysis/badge/?version=latest\n   :target: https://aaanalysis.readthedocs.io/en/latest/?badge=latest\n   :alt: Documentation Status\n\n\n.. Group 3: Potential badges for future\n.. |Conda Version| image:: https://anaconda.org/conda-forge/aaanalysis/badges/version.svg\n   :target: https://anaconda.org/conda-forge/aaanalysis\n   :alt: Conda - Package Version\n\n\n..\n    Missing badges\n    |Conda Version|\n\n.. list-table::\n   :widths: 20 80\n   :header-rows: 1\n\n   * - **Package**\n     - |PyPI Status| |PyPI Version| |Supported Python Versions| |Downloads| |License|\n   * - **Testing**\n     - |Unit Tests| |CodeQL| |Codecov| |Documentation Status|\n\n**AAanalysis** (Amino Acid analysis) is a Python framework for interpretable sequence-based protein prediction.\nIts foundation are the following algorithms:\n\n- **CPP**: Comparative Physicochemical Profiling, a feature engineering algorithm comparing two sets of protein\n  sequences to identify the set of most distinctive features.\n- **dPULearn**: deterministic Positive-Unlabeled (PU) Learning algorithm to enable training on\n  unbalanced and small datasets.\n- **AAclust**: k-optimized clustering wrapper framework to select redundancy-reduced sets of numerical scales\n  (e.g., amino acid scales).\n\nIn addition, AAanalysis provide functions for loading various protein benchmark datasets, amino acid scales,\nand their two-level classification (**AAontology**). We combined **CPP** with the explainable\nAI  `SHAP <https://shap.readthedocs.io/en/latest/index.html>`_ framework to explain sample level predictions with\nsingle-residue resolution.\n\nIf you are looking to make publication-ready plots with a view lines of code, see our\n`Plotting Prelude <https://aaanalysis.readthedocs.io/en/latest/generated/plotting_prelude.html>`_.\n\n\nYou can find the official documentation at `Read the Docs <https://aaanalysis.readthedocs.io/en/latest/>`_.\n\nInstall\n=======\n**AAanalysis** can be installed from `PyPi <https://pypi.org/project/aaanalysis>`_:\n\n.. code-block:: bash\n\n   pip install aaanalysis\n\nFor extended features, including our explainable AI module, please use the 'professional' version:\n\n.. code-block:: bash\n\n   pip install aaanalysis[pro]\n\nContributing\n============\nWe appreciate bug reports, feature requests, or updates on documentation and code. For details, please refer to\n`Contributing Guidelines <CONTRIBUTING.rst>`_. These include specifics about AAanalysis and also notes on Test\nGuided Development (TGD) using ChatGPT. For further questions or suggestions, please email stephanbreimann@gmail.com.\n\nCitations\n=========\nIf you use AAanalysis in your work, please cite the respective publication as follows:\n\n**AAclust**:\n   Breimann and Frishman (2024a),\n   *AAclust: k-optimized clustering for selecting redundancy-reduced sets of amino acid scales*,\n   `bioRxiv <https://www.biorxiv.org/content/10.1101/2024.02.04.578800v1>`__.\n\n**AAontology**:\n   Breimann *et al.* (2024b),\n   *AAontology: An ontology of amino acid scales for interpretable machine learning*,\n   `bioRxiv <https://www.biorxiv.org/content/10.1101/2023.08.03.551768v1>`__.\n\n**CPP**:\n   Breimann and Kamp *et al.* (2024c),\n   *Charting \u03b3-secretase substrates by explainable AI*, .. # Link if available\n\n**dPULearn**:\n   Breimann and Kamp *et al.* (2024c),\n   *Charting \u03b3-secretase substrates by explainable AI*, .. # Link if available\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Python framework for interpretable protein prediction",
    "version": "1.0.0",
    "project_urls": {
        "Documentation": "https://aaanalysis.readthedocs.io",
        "Homepage": "https://aaanalysis.readthedocs.io",
        "Repository": "https://github.com/breimanntools/aaanalysis"
    },
    "split_keywords": [
        "protein",
        " prediction",
        " bioinformatics",
        " machine learning",
        " interpretable ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "de0eb2edf9e8fd6dc7654d4174fc65cfc611446990ef064a2a5a4b1515a47c96",
                "md5": "9420db36b342d6f32daac0f56bf90de5",
                "sha256": "60d9b3b4152f945f84540d47885abb8b34436dbfc2e3e3e5430e4fe5068be052"
            },
            "downloads": -1,
            "filename": "aaanalysis-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9420db36b342d6f32daac0f56bf90de5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 8342659,
            "upload_time": "2024-07-01T22:36:53",
            "upload_time_iso_8601": "2024-07-01T22:36:53.839849Z",
            "url": "https://files.pythonhosted.org/packages/de/0e/b2edf9e8fd6dc7654d4174fc65cfc611446990ef064a2a5a4b1515a47c96/aaanalysis-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "84eb560a4451a9e2f503fa59a0b2e9999072babca6a723d641a67c5807a9bc63",
                "md5": "796b2c9eb352304153da9753dcd62cd1",
                "sha256": "c2a40bfaedb5a1d1761c8b697a24d4fb45bb6fa518d874029e7e92db28dbbff5"
            },
            "downloads": -1,
            "filename": "aaanalysis-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "796b2c9eb352304153da9753dcd62cd1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 8280213,
            "upload_time": "2024-07-01T22:37:21",
            "upload_time_iso_8601": "2024-07-01T22:37:21.566948Z",
            "url": "https://files.pythonhosted.org/packages/84/eb/560a4451a9e2f503fa59a0b2e9999072babca6a723d641a67c5807a9bc63/aaanalysis-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-01 22:37:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "breimanntools",
    "github_project": "aaanalysis",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "aaanalysis"
}
        
Elapsed time: 1.02085s