abcoder


Nameabcoder JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryAgentic bioinformatics coder
upload_time2025-07-08 12:36:46
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords ai agent bioinformatics llm mcp model context protocol scrna-seq single cell
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # abcoder

Agentic backend coder - A Jupyter notebook manager with MCP (Model Context Protocol) integration for AI-assisted code execution and bioinformatics workflows.

**Supports multiple Jupyter kernels (Python, R, etc.) for parallel notebook management.**

## đŸĒŠ What can it do?

- **Jupyter Notebook Management**: Create, switch between, and manage multiple Jupyter notebooks
- **Multi-kernel Support**: Manage and run code in multiple Jupyter kernels (e.g., Python, R) simultaneously
- **Code Execution**: Execute single-step or multi-step code in Jupyter kernels
- **Variable Backup**: Safely backup variables before code execution to prevent data loss
- **API Documentation**: Query function and API documentation directly from the kernel
- **Output Handling**: Capture and display execution results, errors, and generated figures
- **Bioinformatics Integration**: Designed for bioinformatics workflows with support for common libraries like scanpy, pandas, numpy, etc.

## ❓ Who is this for?

- **Bioinformaticians** who want AI assistance in their Jupyter workflows
- **AI developers** building agents that need to execute code in Jupyter environments
- **Researchers** who want to integrate AI tools with their computational notebooks
- **Anyone** who wants to use natural language to control Jupyter notebook execution

## 🌐 Where to use it?

You can use abcoder in most AI clients, plugins, or agent frameworks that support the MCP:

- **AI clients**: Cherry Studio, Claude Desktop, etc.
- **Plugins**: Cline, etc.
- **Agent frameworks**: Agno, etc.

## đŸŽŦ Demo

A demo showing AI-assisted bioinformatics analysis in a Jupyter notebook using natural language commands through abcoder.

[![abcoder Demo](https://img.youtube.com/vi/3jtXIeapslI/0.jpg)](https://youtu.be/3jtXIeapslI)

**Click the image above to watch the demo video**

## 📚 Documentation

For complete documentation, visit: https://github.com/huang-sh/abcoder

## đŸŽī¸ Quickstart

### Install

Install from PyPI:
```bash
pip install abcoder
```

Test the installation:
```bash
abcoder run
```

### Configuration

#### Run abcoder locally

First, check the installation path:
```bash
which abcoder
# Example output: /home/user/bin/abcoder
```

Configure your MCP client:
```json
{
  "mcpServers": {
    "abcoder": {
      "command": "/home/user/bin/abcoder",
      "args": ["run"]
    }
  }
}
```

#### Run abcoder remotely

Start the server on your remote machine:
```bash
abcoder run --transport shttp --port 8000
```

Configure your local MCP client:
```json
{
  "mcpServers": {
    "abcoder": {
      "url": "http://localhost:8000/mcp"
    }
  }
}
```

## đŸ› ī¸ Available Tools

### Notebook Management
- `create_notebook`: Create a new Jupyter notebook with specified ID and path
- `switch_active_notebook`: Switch between different notebooks

### Code Execution
- `single_step_execute`: Execute a single code block
- `multi_step_execute`: Execute multiple code steps with cell addition
- `query_api_doc`: Query function documentation from the kernel

### Features
- **Variable Backup**: Automatically backup variables before execution
- **Error Handling**: Comprehensive error capture and reporting
- **Output Display**: Support for text, images, and other display data
- **Kernel Management**: Automatic kernel lifecycle management


## 🤝 Contributing

If you have any questions, welcome to submit an issue, or contact me(hsh-me@outlook.com). Contributions to the code are also welcome!
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "abcoder",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "AI, agent, bioinformatics, llm, mcp, model context protocol, scRNA-seq, single cell",
    "author": null,
    "author_email": "shuang <hsh-me@outlook.com>",
    "download_url": "https://files.pythonhosted.org/packages/4d/c1/e0f331e805894a37669208efe8b978a2ea8f7c6acd596803d00043bd94aa/abcoder-0.2.0.tar.gz",
    "platform": null,
    "description": "# abcoder\n\nAgentic backend coder - A Jupyter notebook manager with MCP (Model Context Protocol) integration for AI-assisted code execution and bioinformatics workflows.\n\n**Supports multiple Jupyter kernels (Python, R, etc.) for parallel notebook management.**\n\n## \ud83e\udea9 What can it do?\n\n- **Jupyter Notebook Management**: Create, switch between, and manage multiple Jupyter notebooks\n- **Multi-kernel Support**: Manage and run code in multiple Jupyter kernels (e.g., Python, R) simultaneously\n- **Code Execution**: Execute single-step or multi-step code in Jupyter kernels\n- **Variable Backup**: Safely backup variables before code execution to prevent data loss\n- **API Documentation**: Query function and API documentation directly from the kernel\n- **Output Handling**: Capture and display execution results, errors, and generated figures\n- **Bioinformatics Integration**: Designed for bioinformatics workflows with support for common libraries like scanpy, pandas, numpy, etc.\n\n## \u2753 Who is this for?\n\n- **Bioinformaticians** who want AI assistance in their Jupyter workflows\n- **AI developers** building agents that need to execute code in Jupyter environments\n- **Researchers** who want to integrate AI tools with their computational notebooks\n- **Anyone** who wants to use natural language to control Jupyter notebook execution\n\n## \ud83c\udf10 Where to use it?\n\nYou can use abcoder in most AI clients, plugins, or agent frameworks that support the MCP:\n\n- **AI clients**: Cherry Studio, Claude Desktop, etc.\n- **Plugins**: Cline, etc.\n- **Agent frameworks**: Agno, etc.\n\n## \ud83c\udfac Demo\n\nA demo showing AI-assisted bioinformatics analysis in a Jupyter notebook using natural language commands through abcoder.\n\n[![abcoder Demo](https://img.youtube.com/vi/3jtXIeapslI/0.jpg)](https://youtu.be/3jtXIeapslI)\n\n**Click the image above to watch the demo video**\n\n## \ud83d\udcda Documentation\n\nFor complete documentation, visit: https://github.com/huang-sh/abcoder\n\n## \ud83c\udfce\ufe0f Quickstart\n\n### Install\n\nInstall from PyPI:\n```bash\npip install abcoder\n```\n\nTest the installation:\n```bash\nabcoder run\n```\n\n### Configuration\n\n#### Run abcoder locally\n\nFirst, check the installation path:\n```bash\nwhich abcoder\n# Example output: /home/user/bin/abcoder\n```\n\nConfigure your MCP client:\n```json\n{\n  \"mcpServers\": {\n    \"abcoder\": {\n      \"command\": \"/home/user/bin/abcoder\",\n      \"args\": [\"run\"]\n    }\n  }\n}\n```\n\n#### Run abcoder remotely\n\nStart the server on your remote machine:\n```bash\nabcoder run --transport shttp --port 8000\n```\n\nConfigure your local MCP client:\n```json\n{\n  \"mcpServers\": {\n    \"abcoder\": {\n      \"url\": \"http://localhost:8000/mcp\"\n    }\n  }\n}\n```\n\n## \ud83d\udee0\ufe0f Available Tools\n\n### Notebook Management\n- `create_notebook`: Create a new Jupyter notebook with specified ID and path\n- `switch_active_notebook`: Switch between different notebooks\n\n### Code Execution\n- `single_step_execute`: Execute a single code block\n- `multi_step_execute`: Execute multiple code steps with cell addition\n- `query_api_doc`: Query function documentation from the kernel\n\n### Features\n- **Variable Backup**: Automatically backup variables before execution\n- **Error Handling**: Comprehensive error capture and reporting\n- **Output Display**: Support for text, images, and other display data\n- **Kernel Management**: Automatic kernel lifecycle management\n\n\n## \ud83e\udd1d Contributing\n\nIf you have any questions, welcome to submit an issue, or contact me(hsh-me@outlook.com). Contributions to the code are also welcome!",
    "bugtrack_url": null,
    "license": null,
    "summary": "Agentic bioinformatics coder",
    "version": "0.2.0",
    "project_urls": {
        "Documentation": "https://github.com/huang-sh/abcoder",
        "Homepage": "https://github.com/huang-sh/abcoder",
        "Repository": "https://github.com/huang-sh/abcoder"
    },
    "split_keywords": [
        "ai",
        " agent",
        " bioinformatics",
        " llm",
        " mcp",
        " model context protocol",
        " scrna-seq",
        " single cell"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f3204ed3855607230e2397c5fab4d74ece5c8cd02542ea6ae052eff185e389b1",
                "md5": "409d538ff743a1eb1c87826fc867f28c",
                "sha256": "d96f2963a29fc9d1a5426e4c7e49e60cb2ea0a1e11c2e9a6424973cb02b44398"
            },
            "downloads": -1,
            "filename": "abcoder-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "409d538ff743a1eb1c87826fc867f28c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 9486,
            "upload_time": "2025-07-08T12:36:44",
            "upload_time_iso_8601": "2025-07-08T12:36:44.745542Z",
            "url": "https://files.pythonhosted.org/packages/f3/20/4ed3855607230e2397c5fab4d74ece5c8cd02542ea6ae052eff185e389b1/abcoder-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4dc1e0f331e805894a37669208efe8b978a2ea8f7c6acd596803d00043bd94aa",
                "md5": "cfeeba8b19f38c5e2e175cc110d35348",
                "sha256": "2288fb52087380788aafcb5957c4819d372b163c34e4a5756e79bd86a8d2b34b"
            },
            "downloads": -1,
            "filename": "abcoder-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "cfeeba8b19f38c5e2e175cc110d35348",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 8675,
            "upload_time": "2025-07-08T12:36:46",
            "upload_time_iso_8601": "2025-07-08T12:36:46.031609Z",
            "url": "https://files.pythonhosted.org/packages/4d/c1/e0f331e805894a37669208efe8b978a2ea8f7c6acd596803d00043bd94aa/abcoder-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-08 12:36:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "huang-sh",
    "github_project": "abcoder",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "abcoder"
}
        
Elapsed time: 0.41044s