abstractflow


Nameabstractflow JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryDiagram-based AI workflow generation built on AbstractCore
upload_time2025-10-15 16:53:25
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords ai workflow diagram llm automation visual-programming abstractcore machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AbstractFlow

**Diagram-Based AI Workflow Generation**

> 🚧 **Coming Soon** - This project is currently in early development. We're reserving the PyPI name for the upcoming release.

AbstractFlow is an innovative Python library that enables visual, diagram-based creation and execution of AI workflows. Built on top of [AbstractCore](https://github.com/lpalbou/AbstractCore), it provides an intuitive interface for designing complex AI pipelines through interactive diagrams.

## 🎯 Vision

AbstractFlow aims to democratize AI workflow creation by providing:

- **Visual Workflow Design**: Create AI workflows using intuitive drag-and-drop diagrams
- **Multi-Provider Support**: Leverage any LLM provider through AbstractCore's unified interface
- **Real-time Execution**: Watch your workflows execute in real-time with live feedback
- **Collaborative Development**: Share and collaborate on workflow designs
- **Production Ready**: Deploy workflows to production with built-in monitoring and scaling

## 🚀 Planned Features

### Core Capabilities
- **Diagram Editor**: Web-based visual editor for workflow creation
- **Node Library**: Pre-built nodes for common AI operations (text generation, analysis, transformation)
- **Custom Nodes**: Create custom nodes with your own logic and AI models
- **Flow Control**: Conditional branching, loops, and parallel execution
- **Data Transformation**: Built-in data processing and transformation capabilities

### AI Integration
- **Universal LLM Support**: Works with OpenAI, Anthropic, Ollama, and all AbstractCore providers
- **Tool Calling**: Seamless integration with external APIs and services
- **Structured Output**: Type-safe data flow between workflow nodes
- **Streaming Support**: Real-time processing for interactive applications

### Deployment & Monitoring
- **Cloud Deployment**: One-click deployment to major cloud platforms
- **Monitoring Dashboard**: Real-time workflow execution monitoring
- **Version Control**: Git-based workflow versioning and collaboration
- **API Generation**: Automatic REST API generation from workflows

## 🏗️ Architecture

AbstractFlow is built on a robust foundation:

```
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   Diagram UI    │    │  Workflow Engine │    │   AbstractCore  │
│                 │────│                 │────│                 │
│ Visual Editor   │    │ Execution Logic │    │ LLM Providers   │
└─────────────────┘    └─────────────────┘    └─────────────────┘
```

- **Frontend**: React-based diagram editor with real-time collaboration
- **Backend**: Python workflow execution engine with FastAPI
- **AI Layer**: AbstractCore for unified LLM provider access
- **Storage**: Workflow definitions, execution history, and metadata

## 🎨 Use Cases

### Business Process Automation
- Customer support ticket routing and response generation
- Document analysis and summarization pipelines
- Content creation and review workflows

### Data Processing
- Multi-step data analysis with AI insights
- Automated report generation from raw data
- Real-time data enrichment and validation

### Creative Workflows
- Multi-stage content creation (research → draft → review → publish)
- Interactive storytelling and narrative generation
- Collaborative writing and editing processes

### Research & Development
- Hypothesis generation and testing workflows
- Literature review and synthesis automation
- Experimental design and analysis pipelines

## 🛠️ Technology Stack

- **Core**: Python 3.8+ with AsyncIO support
- **AI Integration**: [AbstractCore](https://github.com/lpalbou/AbstractCore) for LLM provider abstraction
- **Web Framework**: FastAPI for high-performance API server
- **Frontend**: React with TypeScript for the diagram editor
- **Database**: PostgreSQL for workflow storage, Redis for caching
- **Deployment**: Docker containers with Kubernetes support

## 📦 Installation (Coming Soon)

```bash
# Install AbstractFlow
pip install abstractflow

# Or with all optional dependencies
pip install abstractflow[all]

# Development installation
pip install abstractflow[dev]
```

## 🚀 Quick Start (Preview)

```python
from abstractflow import WorkflowBuilder, TextNode, LLMNode

# Create a simple workflow
workflow = WorkflowBuilder()

# Add nodes
input_node = workflow.add_node(TextNode("user_input"))
llm_node = workflow.add_node(LLMNode(
    provider="openai",
    model="gpt-4o-mini",
    prompt="Analyze this text: {user_input}"
))
output_node = workflow.add_node(TextNode("analysis_result"))

# Connect nodes
workflow.connect(input_node, llm_node)
workflow.connect(llm_node, output_node)

# Execute workflow
result = await workflow.execute({
    "user_input": "The future of AI is bright and full of possibilities."
})

print(result["analysis_result"])
```

## 🎯 Roadmap

### Phase 1: Foundation (Q1 2025)
- [ ] Core workflow engine
- [ ] Basic node types (LLM, Transform, Condition)
- [ ] CLI interface for workflow execution
- [ ] AbstractCore integration

### Phase 2: Visual Editor (Q2 2025)
- [ ] Web-based diagram editor
- [ ] Real-time collaboration features
- [ ] Workflow templates and examples
- [ ] Import/export functionality

### Phase 3: Advanced Features (Q3 2025)
- [ ] Custom node development SDK
- [ ] Advanced flow control (loops, parallel execution)
- [ ] Monitoring and analytics dashboard
- [ ] Cloud deployment integration

### Phase 4: Enterprise (Q4 2025)
- [ ] Enterprise security features
- [ ] Advanced monitoring and alerting
- [ ] Multi-tenant support
- [ ] Professional services and support

## 🤝 Contributing

We welcome contributions from the community! Once development begins, you'll be able to:

- Report bugs and request features
- Submit pull requests for improvements
- Create and share workflow templates
- Contribute to documentation

## 📄 License

AbstractFlow will be released under the MIT License, ensuring it remains free and open-source for all users.

## 🔗 Related Projects

- **[AbstractCore](https://github.com/lpalbou/AbstractCore)**: The unified LLM interface powering AbstractFlow
- **[AbstractCore Documentation](http://www.abstractcore.ai/)**: Comprehensive guides and API reference

## 📞 Contact

For early access, partnerships, or questions about AbstractFlow:

- **GitHub**: [Issues and Discussions](https://github.com/lpalbou/AbstractFlow) (coming soon)
- **Email**: Contact through AbstractCore channels
- **Website**: [www.abstractflow.ai](http://www.abstractflow.ai) (coming soon)

---

**AbstractFlow** - Visualize, Create, Execute. The future of AI workflow development is here.

> Built with ❤️ on top of [AbstractCore](https://github.com/lpalbou/AbstractCore)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "abstractflow",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "AbstractFlow Team <contact@abstractflow.ai>",
    "keywords": "ai, workflow, diagram, llm, automation, visual-programming, abstractcore, machine-learning",
    "author": null,
    "author_email": "AbstractFlow Team <contact@abstractflow.ai>",
    "download_url": "https://files.pythonhosted.org/packages/6e/c2/854fccce2806f6b5fb14a2fa1993c089239726016ac4970e69c9c39d66c2/abstractflow-0.1.0.tar.gz",
    "platform": null,
    "description": "# AbstractFlow\n\n**Diagram-Based AI Workflow Generation**\n\n> \ud83d\udea7 **Coming Soon** - This project is currently in early development. We're reserving the PyPI name for the upcoming release.\n\nAbstractFlow is an innovative Python library that enables visual, diagram-based creation and execution of AI workflows. Built on top of [AbstractCore](https://github.com/lpalbou/AbstractCore), it provides an intuitive interface for designing complex AI pipelines through interactive diagrams.\n\n## \ud83c\udfaf Vision\n\nAbstractFlow aims to democratize AI workflow creation by providing:\n\n- **Visual Workflow Design**: Create AI workflows using intuitive drag-and-drop diagrams\n- **Multi-Provider Support**: Leverage any LLM provider through AbstractCore's unified interface\n- **Real-time Execution**: Watch your workflows execute in real-time with live feedback\n- **Collaborative Development**: Share and collaborate on workflow designs\n- **Production Ready**: Deploy workflows to production with built-in monitoring and scaling\n\n## \ud83d\ude80 Planned Features\n\n### Core Capabilities\n- **Diagram Editor**: Web-based visual editor for workflow creation\n- **Node Library**: Pre-built nodes for common AI operations (text generation, analysis, transformation)\n- **Custom Nodes**: Create custom nodes with your own logic and AI models\n- **Flow Control**: Conditional branching, loops, and parallel execution\n- **Data Transformation**: Built-in data processing and transformation capabilities\n\n### AI Integration\n- **Universal LLM Support**: Works with OpenAI, Anthropic, Ollama, and all AbstractCore providers\n- **Tool Calling**: Seamless integration with external APIs and services\n- **Structured Output**: Type-safe data flow between workflow nodes\n- **Streaming Support**: Real-time processing for interactive applications\n\n### Deployment & Monitoring\n- **Cloud Deployment**: One-click deployment to major cloud platforms\n- **Monitoring Dashboard**: Real-time workflow execution monitoring\n- **Version Control**: Git-based workflow versioning and collaboration\n- **API Generation**: Automatic REST API generation from workflows\n\n## \ud83c\udfd7\ufe0f Architecture\n\nAbstractFlow is built on a robust foundation:\n\n```\n\u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510    \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510    \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\n\u2502   Diagram UI    \u2502    \u2502  Workflow Engine \u2502    \u2502   AbstractCore  \u2502\n\u2502                 \u2502\u2500\u2500\u2500\u2500\u2502                 \u2502\u2500\u2500\u2500\u2500\u2502                 \u2502\n\u2502 Visual Editor   \u2502    \u2502 Execution Logic \u2502    \u2502 LLM Providers   \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518    \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518    \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n```\n\n- **Frontend**: React-based diagram editor with real-time collaboration\n- **Backend**: Python workflow execution engine with FastAPI\n- **AI Layer**: AbstractCore for unified LLM provider access\n- **Storage**: Workflow definitions, execution history, and metadata\n\n## \ud83c\udfa8 Use Cases\n\n### Business Process Automation\n- Customer support ticket routing and response generation\n- Document analysis and summarization pipelines\n- Content creation and review workflows\n\n### Data Processing\n- Multi-step data analysis with AI insights\n- Automated report generation from raw data\n- Real-time data enrichment and validation\n\n### Creative Workflows\n- Multi-stage content creation (research \u2192 draft \u2192 review \u2192 publish)\n- Interactive storytelling and narrative generation\n- Collaborative writing and editing processes\n\n### Research & Development\n- Hypothesis generation and testing workflows\n- Literature review and synthesis automation\n- Experimental design and analysis pipelines\n\n## \ud83d\udee0\ufe0f Technology Stack\n\n- **Core**: Python 3.8+ with AsyncIO support\n- **AI Integration**: [AbstractCore](https://github.com/lpalbou/AbstractCore) for LLM provider abstraction\n- **Web Framework**: FastAPI for high-performance API server\n- **Frontend**: React with TypeScript for the diagram editor\n- **Database**: PostgreSQL for workflow storage, Redis for caching\n- **Deployment**: Docker containers with Kubernetes support\n\n## \ud83d\udce6 Installation (Coming Soon)\n\n```bash\n# Install AbstractFlow\npip install abstractflow\n\n# Or with all optional dependencies\npip install abstractflow[all]\n\n# Development installation\npip install abstractflow[dev]\n```\n\n## \ud83d\ude80 Quick Start (Preview)\n\n```python\nfrom abstractflow import WorkflowBuilder, TextNode, LLMNode\n\n# Create a simple workflow\nworkflow = WorkflowBuilder()\n\n# Add nodes\ninput_node = workflow.add_node(TextNode(\"user_input\"))\nllm_node = workflow.add_node(LLMNode(\n    provider=\"openai\",\n    model=\"gpt-4o-mini\",\n    prompt=\"Analyze this text: {user_input}\"\n))\noutput_node = workflow.add_node(TextNode(\"analysis_result\"))\n\n# Connect nodes\nworkflow.connect(input_node, llm_node)\nworkflow.connect(llm_node, output_node)\n\n# Execute workflow\nresult = await workflow.execute({\n    \"user_input\": \"The future of AI is bright and full of possibilities.\"\n})\n\nprint(result[\"analysis_result\"])\n```\n\n## \ud83c\udfaf Roadmap\n\n### Phase 1: Foundation (Q1 2025)\n- [ ] Core workflow engine\n- [ ] Basic node types (LLM, Transform, Condition)\n- [ ] CLI interface for workflow execution\n- [ ] AbstractCore integration\n\n### Phase 2: Visual Editor (Q2 2025)\n- [ ] Web-based diagram editor\n- [ ] Real-time collaboration features\n- [ ] Workflow templates and examples\n- [ ] Import/export functionality\n\n### Phase 3: Advanced Features (Q3 2025)\n- [ ] Custom node development SDK\n- [ ] Advanced flow control (loops, parallel execution)\n- [ ] Monitoring and analytics dashboard\n- [ ] Cloud deployment integration\n\n### Phase 4: Enterprise (Q4 2025)\n- [ ] Enterprise security features\n- [ ] Advanced monitoring and alerting\n- [ ] Multi-tenant support\n- [ ] Professional services and support\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions from the community! Once development begins, you'll be able to:\n\n- Report bugs and request features\n- Submit pull requests for improvements\n- Create and share workflow templates\n- Contribute to documentation\n\n## \ud83d\udcc4 License\n\nAbstractFlow will be released under the MIT License, ensuring it remains free and open-source for all users.\n\n## \ud83d\udd17 Related Projects\n\n- **[AbstractCore](https://github.com/lpalbou/AbstractCore)**: The unified LLM interface powering AbstractFlow\n- **[AbstractCore Documentation](http://www.abstractcore.ai/)**: Comprehensive guides and API reference\n\n## \ud83d\udcde Contact\n\nFor early access, partnerships, or questions about AbstractFlow:\n\n- **GitHub**: [Issues and Discussions](https://github.com/lpalbou/AbstractFlow) (coming soon)\n- **Email**: Contact through AbstractCore channels\n- **Website**: [www.abstractflow.ai](http://www.abstractflow.ai) (coming soon)\n\n---\n\n**AbstractFlow** - Visualize, Create, Execute. The future of AI workflow development is here.\n\n> Built with \u2764\ufe0f on top of [AbstractCore](https://github.com/lpalbou/AbstractCore)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Diagram-based AI workflow generation built on AbstractCore",
    "version": "0.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/lpalbou/AbstractFlow/issues",
        "Changelog": "https://github.com/lpalbou/AbstractFlow/blob/main/CHANGELOG.md",
        "Documentation": "https://abstractflow.readthedocs.io",
        "Homepage": "https://github.com/lpalbou/AbstractFlow",
        "Repository": "https://github.com/lpalbou/AbstractFlow"
    },
    "split_keywords": [
        "ai",
        " workflow",
        " diagram",
        " llm",
        " automation",
        " visual-programming",
        " abstractcore",
        " machine-learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ef684dfca2388cb58973105da06d2a175c8e837770d0e58e402c3ca7a1f2b9a5",
                "md5": "bc14f538edf0bdec8a53577a30225b44",
                "sha256": "c3c74b542f82898a2863f165721c3ca7925df7a02026715401eaf002279eb2ac"
            },
            "downloads": -1,
            "filename": "abstractflow-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bc14f538edf0bdec8a53577a30225b44",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 7906,
            "upload_time": "2025-10-15T16:53:24",
            "upload_time_iso_8601": "2025-10-15T16:53:24.067428Z",
            "url": "https://files.pythonhosted.org/packages/ef/68/4dfca2388cb58973105da06d2a175c8e837770d0e58e402c3ca7a1f2b9a5/abstractflow-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6ec2854fccce2806f6b5fb14a2fa1993c089239726016ac4970e69c9c39d66c2",
                "md5": "3bccafd8114538ed67cbd67a925e3da6",
                "sha256": "b5cb49f2aa337cecde68c61db7dbe1a41e5f952c37945025fecf15ef00c1ec68"
            },
            "downloads": -1,
            "filename": "abstractflow-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "3bccafd8114538ed67cbd67a925e3da6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 9220,
            "upload_time": "2025-10-15T16:53:25",
            "upload_time_iso_8601": "2025-10-15T16:53:25.445316Z",
            "url": "https://files.pythonhosted.org/packages/6e/c2/854fccce2806f6b5fb14a2fa1993c089239726016ac4970e69c9c39d66c2/abstractflow-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-15 16:53:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lpalbou",
    "github_project": "AbstractFlow",
    "github_not_found": true,
    "lcname": "abstractflow"
}
        
Elapsed time: 1.64404s