act_dr6_lenslike


Nameact_dr6_lenslike JSON
Version 1.2.0 PyPI version JSON
download
home_pageNone
SummaryLikelihood for the Atacama Cosmology Telescope DR6 CMB lensing data.
upload_time2024-02-06 00:42:21
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements pytest numpy scipy requests tqdm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ACT DR6 Lensing Likelihood
[![PyPI Badge](https://img.shields.io/pypi/v/act_dr6_lenslike?label=PyPI&logo=pypi)](https://pypi.org/project/act_dr6_lenslike/)
[![CI Badge](https://github.com/ACTCollaboration/act_dr6_lenslike/actions/workflows/testing.yml/badge.svg)](https://github.com/ACTCollaboration/act_dr6_lenslike/actions)

This repository contains likelihood software for the ACT DR6 CMB lensing analysis. If you use this software and/or the associated data, please cite both of the following papers:
- [Madhavacheril, Qu, Sherwin, MacCrann, Li et al ACT Collaboration (2023), arxiv:2304.05203](https://arxiv.org/abs/2304.05203)
- [Qu, Sherwin, Madhavacheril, Han, Crowley et al ACT Collaboration (2023), arxiv:2304.05202](https://arxiv.org/abs/2304.05202)

In addition, if you use the ACT+Planck lensing combination variant from the likelihood, please also cite:
- [Carron, Mirmelstein, Lewis (2022), arxiv:2206.07773, JCAP09(2022)039](https://arxiv.org/abs/2206.07773)

## Chains

A pre-release version of the chains from Madhavacheril et al are available [here](https://portal.nersc.gov/project/act/act_dr6_lensing/chains/). Please make sure to read the README file.

## Step 1: Install
### Option 1: Install from PyPI
You can install the likelihood directly with:

    pip install act_dr6_lenslike

### Option 2: Install from Github
If you wish to be able to make changes to the likelihood for development, first clone this repository. Then install with symbolic links:

    pip install -e . --user

Tests can be run using 

    python setup.py test

## Step 2: download and unpack data

This can be performed automatically with the supplied `get-act-data.sh` script. Otherwise follow the steps below.

Download the likelihood data tarball for ACT DR6 lensing from [NASA's LAMBDA archive](https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html).

Extract the tarball into the `act_dr6_lenslike/data/` directory in the cloned repository such the directory `v1.2` is directly inside it. Only then should you proceed with the next steps.
    
## Step 3: use in Python codes

### Generic Python likelihood

```
import act_dr6_lenslike as alike

variant = 'act_baseline'
lens_only = False # use True if not combining with any primary CMB data
like_corrections = True # should be False if lens_only is True

# Do this once
data_dict = alike.load_data(variant,lens_only=lens_only,like_corrections=like_corrections)
# This dict will now have entries like `data_binned_clkk` (binned data vector), `cov`
# (covariance matrix) and `binmat_act` (binning matrix to be applied to a theory
# curve starting at ell=0).

# Get cl_kk, cl_tt, cl_ee, cl_te, cl_bb predictions from your Boltzmann code.
# These are the CMB lensing convergence spectra (not potential or deflection)
# as well as the TT, EE, TE, BB CMB spectra (needed for likelihood corrections)
# in uK^2 units. All of these are C_ell (not D_ell), no ell or 2pi factors.
# Then call
lnlike=alike.generic_lnlike(data_dict,ell_kk,cl_kk,ell_cmb,cl_tt,cl_ee,cl_te,cl_bb)
```

### Cobaya likelihood

Your Cobaya YAML or dictionary should have an entry of this form

```
likelihood:
    act_dr6_lenslike.ACTDR6LensLike:
        lens_only: False
        stop_at_error: True
        lmax: 4000
        variant: act_baseline
```

No other parameters need to be set. (e.g. do not manually set `like_corrections` or `no_like_corrections` here).
An example is provided in `ACTDR6LensLike-example.yaml`. If, however, you are combining with
the ACT DR4 CMB 2-point power spectrum likelihood, you should also set `no_actlike_cmb_corrections: True`
(in addition to `lens_only: True` as described below). You do not need to do this if you are combining
with Planck CMB 2-point power spectrum likelihoods.

### Important parameters

- `variant` should be
    - `act_baseline` for the ACT-only lensing power spectrum with the baseline multipole range
    - `act_extended` for the ACT-only lensing power spectrum with the extended multipole range (L<1250)
    - `actplanck_baseline` for the ACT+Planck lensing power spectrum with the baseline multipole range
    - `actplanck_extended` for the ACT+Planck lensing power spectrum with the extended multipole range (L<1250)
- `lens_only` should be
    - False when combining with any primary CMB measurement
    - True when not combining with any primary CMB measurement

### Recommended theory accuracy

For CAMB calls, we recommend the following (or higher accuracy):
- `lmax`: 4000
- `lens_margin`:1250
- `lens_potential_accuracy`: 4
- `AccuracyBoost`:1
- `lSampleBoost`:1
- `lAccuracyBoost`:1
- `halofit_version`:`mead2016`

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "act_dr6_lenslike",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Mathew Madhavacheril <mathm@sas.upenn.edu>, Ian Harrison <harrisoni@cardiff.ac.uk>",
    "download_url": "https://files.pythonhosted.org/packages/6d/9f/4650c16d0971202ac4455006fee788e02f67f14addc5c659cc5cfc1744fc/act_dr6_lenslike-1.2.0.tar.gz",
    "platform": null,
    "description": "# ACT DR6 Lensing Likelihood\n[![PyPI Badge](https://img.shields.io/pypi/v/act_dr6_lenslike?label=PyPI&logo=pypi)](https://pypi.org/project/act_dr6_lenslike/)\n[![CI Badge](https://github.com/ACTCollaboration/act_dr6_lenslike/actions/workflows/testing.yml/badge.svg)](https://github.com/ACTCollaboration/act_dr6_lenslike/actions)\n\nThis repository contains likelihood software for the ACT DR6 CMB lensing analysis. If you use this software and/or the associated data, please cite both of the following papers:\n- [Madhavacheril, Qu, Sherwin, MacCrann, Li et al ACT Collaboration (2023), arxiv:2304.05203](https://arxiv.org/abs/2304.05203)\n- [Qu, Sherwin, Madhavacheril, Han, Crowley et al ACT Collaboration (2023), arxiv:2304.05202](https://arxiv.org/abs/2304.05202)\n\nIn addition, if you use the ACT+Planck lensing combination variant from the likelihood, please also cite:\n- [Carron, Mirmelstein, Lewis (2022), arxiv:2206.07773, JCAP09(2022)039](https://arxiv.org/abs/2206.07773)\n\n## Chains\n\nA pre-release version of the chains from Madhavacheril et al are available [here](https://portal.nersc.gov/project/act/act_dr6_lensing/chains/). Please make sure to read the README file.\n\n## Step 1: Install\n### Option 1: Install from PyPI\nYou can install the likelihood directly with:\n\n    pip install act_dr6_lenslike\n\n### Option 2: Install from Github\nIf you wish to be able to make changes to the likelihood for development, first clone this repository. Then install with symbolic links:\n\n    pip install -e . --user\n\nTests can be run using \n\n    python setup.py test\n\n## Step 2: download and unpack data\n\nThis can be performed automatically with the supplied `get-act-data.sh` script. Otherwise follow the steps below.\n\nDownload the likelihood data tarball for ACT DR6 lensing from [NASA's LAMBDA archive](https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html).\n\nExtract the tarball into the `act_dr6_lenslike/data/` directory in the cloned repository such the directory `v1.2` is directly inside it. Only then should you proceed with the next steps.\n    \n## Step 3: use in Python codes\n\n### Generic Python likelihood\n\n```\nimport act_dr6_lenslike as alike\n\nvariant = 'act_baseline'\nlens_only = False # use True if not combining with any primary CMB data\nlike_corrections = True # should be False if lens_only is True\n\n# Do this once\ndata_dict = alike.load_data(variant,lens_only=lens_only,like_corrections=like_corrections)\n# This dict will now have entries like `data_binned_clkk` (binned data vector), `cov`\n# (covariance matrix) and `binmat_act` (binning matrix to be applied to a theory\n# curve starting at ell=0).\n\n# Get cl_kk, cl_tt, cl_ee, cl_te, cl_bb predictions from your Boltzmann code.\n# These are the CMB lensing convergence spectra (not potential or deflection)\n# as well as the TT, EE, TE, BB CMB spectra (needed for likelihood corrections)\n# in uK^2 units. All of these are C_ell (not D_ell), no ell or 2pi factors.\n# Then call\nlnlike=alike.generic_lnlike(data_dict,ell_kk,cl_kk,ell_cmb,cl_tt,cl_ee,cl_te,cl_bb)\n```\n\n### Cobaya likelihood\n\nYour Cobaya YAML or dictionary should have an entry of this form\n\n```\nlikelihood:\n    act_dr6_lenslike.ACTDR6LensLike:\n        lens_only: False\n        stop_at_error: True\n        lmax: 4000\n        variant: act_baseline\n```\n\nNo other parameters need to be set. (e.g. do not manually set `like_corrections` or `no_like_corrections` here).\nAn example is provided in `ACTDR6LensLike-example.yaml`. If, however, you are combining with\nthe ACT DR4 CMB 2-point power spectrum likelihood, you should also set `no_actlike_cmb_corrections: True`\n(in addition to `lens_only: True` as described below). You do not need to do this if you are combining\nwith Planck CMB 2-point power spectrum likelihoods.\n\n### Important parameters\n\n- `variant` should be\n    - `act_baseline` for the ACT-only lensing power spectrum with the baseline multipole range\n    - `act_extended` for the ACT-only lensing power spectrum with the extended multipole range (L<1250)\n    - `actplanck_baseline` for the ACT+Planck lensing power spectrum with the baseline multipole range\n    - `actplanck_extended` for the ACT+Planck lensing power spectrum with the extended multipole range (L<1250)\n- `lens_only` should be\n    - False when combining with any primary CMB measurement\n    - True when not combining with any primary CMB measurement\n\n### Recommended theory accuracy\n\nFor CAMB calls, we recommend the following (or higher accuracy):\n- `lmax`: 4000\n- `lens_margin`:1250\n- `lens_potential_accuracy`: 4\n- `AccuracyBoost`:1\n- `lSampleBoost`:1\n- `lAccuracyBoost`:1\n- `halofit_version`:`mead2016`\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Likelihood for the Atacama Cosmology Telescope DR6 CMB lensing data.",
    "version": "1.2.0",
    "project_urls": {
        "Source": "https://github.com/ACTCollaboration/act_dr6_lenslike"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f2a06744e1624aac3339d94a636ead983bd8aa180e0352e0a13e26f91ba006ac",
                "md5": "111dc0f357e6e4ca5f02fb392ab2107e",
                "sha256": "34407054632dc045c7cb85b1439b85b15e57877576d3d8538b1f8e0a388027ea"
            },
            "downloads": -1,
            "filename": "act_dr6_lenslike-1.2.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "111dc0f357e6e4ca5f02fb392ab2107e",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 13203,
            "upload_time": "2024-02-06T00:42:19",
            "upload_time_iso_8601": "2024-02-06T00:42:19.342517Z",
            "url": "https://files.pythonhosted.org/packages/f2/a0/6744e1624aac3339d94a636ead983bd8aa180e0352e0a13e26f91ba006ac/act_dr6_lenslike-1.2.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6d9f4650c16d0971202ac4455006fee788e02f67f14addc5c659cc5cfc1744fc",
                "md5": "18df29b127a247c15eaa94cf6f3807e4",
                "sha256": "1ef0028be9262301c5125da4f226e3d3f6fcc99f9808bf8a9a5efa22c59ead14"
            },
            "downloads": -1,
            "filename": "act_dr6_lenslike-1.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "18df29b127a247c15eaa94cf6f3807e4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 14631,
            "upload_time": "2024-02-06T00:42:21",
            "upload_time_iso_8601": "2024-02-06T00:42:21.003129Z",
            "url": "https://files.pythonhosted.org/packages/6d/9f/4650c16d0971202ac4455006fee788e02f67f14addc5c659cc5cfc1744fc/act_dr6_lenslike-1.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-06 00:42:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ACTCollaboration",
    "github_project": "act_dr6_lenslike",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "pytest",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "requests",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        }
    ],
    "lcname": "act_dr6_lenslike"
}
        
Elapsed time: 0.17652s