adult-dataset


Nameadult-dataset JSON
Version 2.1.0 PyPI version JSON
download
home_pageNone
SummaryPyTorch dataset wrapper for the
upload_time2024-01-30 17:23:47
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords pytorch dataset adult census income
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # adult-dataset
A PyTorch dataset wrapper for the 
[Adult (Census Income)](https://archive.ics.uci.edu/dataset/2/adult) dataset.
Adult is a popular dataset in machine learning fairness research. 

This package provides the `adult.Adult` class:
a`torch.utils.data.Datasets` loading and, optionally, downloading the
Adult dataset.
It can be used like the `MNIST` dataset in
[torchvision](https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html?highlight=mnist#torchvision.datasets.MNIST).

Beyond `adult.Adult`, this package also provides `adult.AdultRaw`,
which works just as `adult.Adult`, but
does not standardize the features in the dataset and does not apply one-hot encoding.

## Installation
```shell
pip install adult-dataset
```

## Basic Usage
```python
from adult import Adult

# load (if necessary, download) the Adult training dataset 
train_set = Adult(root="datasets", download=True)
# load the test set
test_set = Adult(root="datasets", train=False, download=True)

inputs, target = train_set[0]  # retrieve the first sample of the training set

# iterate over the training set
for inputs, target in iter(train_set):
    ...  # Do something with a single sample

# use a PyTorch data loader
from torch.utils.data import DataLoader

loader = DataLoader(test_set, batch_size=32, shuffle=True)
for epoch in range(100):
    for inputs, targets in iter(loader):
        ...  # Do something with a batch of samples
```

## Advanced Usage

Turn off status messages while downloading the dataset:
```python
Adult(root=..., output_fn=None)
```

Use the `logging` module for logging status messages while downloading the
dataset instead of placing the status messages on `sys.stdout`.
```python
import logging

Adult(root=..., output_fn=logging.info)
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "adult-dataset",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "PyTorch,dataset,Adult,Census Income",
    "author": null,
    "author_email": "David Boetius <david.boetius@uni-konstanz.de>",
    "download_url": "https://files.pythonhosted.org/packages/da/48/b8bd172b5d03cf8b4f0197881db5a931ecbc9ab9396061efc68b50b5cc39/adult_dataset-2.1.0.tar.gz",
    "platform": null,
    "description": "# adult-dataset\nA PyTorch dataset wrapper for the \n[Adult (Census Income)](https://archive.ics.uci.edu/dataset/2/adult) dataset.\nAdult is a popular dataset in machine learning fairness research. \n\nThis package provides the `adult.Adult` class:\na`torch.utils.data.Datasets` loading and, optionally, downloading the\nAdult dataset.\nIt can be used like the `MNIST` dataset in\n[torchvision](https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html?highlight=mnist#torchvision.datasets.MNIST).\n\nBeyond `adult.Adult`, this package also provides `adult.AdultRaw`,\nwhich works just as `adult.Adult`, but\ndoes not standardize the features in the dataset and does not apply one-hot encoding.\n\n## Installation\n```shell\npip install adult-dataset\n```\n\n## Basic Usage\n```python\nfrom adult import Adult\n\n# load (if necessary, download) the Adult training dataset \ntrain_set = Adult(root=\"datasets\", download=True)\n# load the test set\ntest_set = Adult(root=\"datasets\", train=False, download=True)\n\ninputs, target = train_set[0]  # retrieve the first sample of the training set\n\n# iterate over the training set\nfor inputs, target in iter(train_set):\n    ...  # Do something with a single sample\n\n# use a PyTorch data loader\nfrom torch.utils.data import DataLoader\n\nloader = DataLoader(test_set, batch_size=32, shuffle=True)\nfor epoch in range(100):\n    for inputs, targets in iter(loader):\n        ...  # Do something with a batch of samples\n```\n\n## Advanced Usage\n\nTurn off status messages while downloading the dataset:\n```python\nAdult(root=..., output_fn=None)\n```\n\nUse the `logging` module for logging status messages while downloading the\ndataset instead of placing the status messages on `sys.stdout`.\n```python\nimport logging\n\nAdult(root=..., output_fn=logging.info)\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "PyTorch dataset wrapper for the",
    "version": "2.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/cherrywoods/adult-dataset/issues",
        "Homepage": "https://github.com/cherrywoods/adult-dataset",
        "Repository": "https://github.com/cherrywoods/adult-dataset.git"
    },
    "split_keywords": [
        "pytorch",
        "dataset",
        "adult",
        "census income"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "64a2e664226ea4e3a6735008a759d618024109da108e4cf755fb310efef25cb9",
                "md5": "afb9d1f4f5e0f9630b56aa43dc5f7591",
                "sha256": "27e9b4b3ce2d81a8298cc26713f69780ad0fc16ee1c68d6efe743d7e13bc200e"
            },
            "downloads": -1,
            "filename": "adult_dataset-2.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "afb9d1f4f5e0f9630b56aa43dc5f7591",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 8438,
            "upload_time": "2024-01-30T17:23:09",
            "upload_time_iso_8601": "2024-01-30T17:23:09.470996Z",
            "url": "https://files.pythonhosted.org/packages/64/a2/e664226ea4e3a6735008a759d618024109da108e4cf755fb310efef25cb9/adult_dataset-2.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "da48b8bd172b5d03cf8b4f0197881db5a931ecbc9ab9396061efc68b50b5cc39",
                "md5": "326753df1b083532e36be90055d38eb3",
                "sha256": "d41490a57eb4ca1d0271c34a2dde39a1747fb484ea5a3baa1aa5d91d8f025179"
            },
            "downloads": -1,
            "filename": "adult_dataset-2.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "326753df1b083532e36be90055d38eb3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 10552,
            "upload_time": "2024-01-30T17:23:47",
            "upload_time_iso_8601": "2024-01-30T17:23:47.381183Z",
            "url": "https://files.pythonhosted.org/packages/da/48/b8bd172b5d03cf8b4f0197881db5a931ecbc9ab9396061efc68b50b5cc39/adult_dataset-2.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-30 17:23:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cherrywoods",
    "github_project": "adult-dataset",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "adult-dataset"
}
        
Elapsed time: 1.89774s