aegis-framework


Nameaegis-framework JSON
Version 0.1.18 PyPI version JSON
download
home_pagehttps://github.com/metisos/aegis-framework
SummaryA comprehensive, extensible AI agent framework with local LLM integration
upload_time2024-11-25 16:52:28
maintainerNone
docs_urlNone
authorMetis Analytics
requires_python>=3.7
licenseNone
keywords ai agents llm machine-learning artificial-intelligence multi-agent ollama
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Aegis Multi-Agent Framework

A powerful, extensible platform for building and deploying AI agent systems with seamless local LLM integration.

## Overview

The Aegis Multi-Agent Framework provides a robust foundation for creating sophisticated multi-agent systems while maintaining simplicity and flexibility. Perfect for both researchers and developers looking to build advanced AI agent applications.

### Key Features

- **Modular Agent Architecture**
  - Plug-and-play agent components
  - Customizable agent behaviors
  - Extensible design patterns

- **Local LLM Integration**
  - Native Ollama support
  - Multiple model compatibility
  - Optimized inference pipeline

- **Advanced Task Management**
  - Real-time task monitoring
  - Parallel task execution
  - Priority-based scheduling

## Quick Start

### Installation

```bash
pip install aegis-framework
```

### Basic Usage

```python
from aegis_framework import MasterAIAgent, DesignAgent

# Initialize a master agent
agent = MasterAIAgent(model="gemma2:9b")

# Generate responses
response = agent.answer_question(
    "What are the key principles of multi-agent systems?"
)
print(response)

# Create a specialized design agent
designer = DesignAgent(model="gemma2:9b")
design = designer.generate_new_design(
    context="Create a microservices architecture",
    constraints=["scalability", "fault-tolerance"]
)
print(design)
```

## Creating Custom Agents

```python
from aegis_framework import MasterAIAgent
from typing import Dict, Any, Optional

class DataAnalysisAgent(MasterAIAgent):
    def __init__(
        self,
        model: str = "gemma2:9b",
        custom_tasks: Optional[Dict[str, List[str]]] = None
    ):
        super().__init__(model=model)
        
        # Add specialized tasks
        self.agent_task_map.update({
            "data_analysis": [
                "analyze data",
                "statistical analysis",
                "trend analysis",
                "data visualization"
            ]
        })
        
        if custom_tasks:
            self.agent_task_map.update(custom_tasks)
    
    def analyze_data(
        self,
        data: str,
        analysis_type: str = "comprehensive"
    ) -> Dict[str, Any]:
        """Perform data analysis with specified parameters."""
        prompt = f"Analyze this {analysis_type} data: {data}"
        return self.perform_task(prompt)

# Usage
analyst = DataAnalysisAgent()
results = analyst.analyze_data(
    data="your_data_here",
    analysis_type="statistical"
)
```

## System Requirements

- Python 3.7+
- Ollama (for local LLM support)
- 8GB+ RAM (recommended)
- CUDA-compatible GPU (optional)

## Example Scripts

The framework includes several example scripts to help you get started:

1. `basic_usage.py`: Demonstrates core functionality
2. `design_agent_example.py`: Shows advanced design capabilities
3. `custom_agent_example.py`: Illustrates custom agent creation

Run any example with the `--help` flag to see available options:
```bash
python examples/basic_usage.py --help
```

## Version History

Current Version: 0.1.15

Key Updates:
- Enhanced local LLM integration
- Improved design agent capabilities
- Better error handling
- More comprehensive examples

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Contact

- **Author**: Metis Analytics
- **Email**: cjohnson@metisos.com
- **GitHub Issues**: [Report a bug](https://github.com/metisos/aegis_framework/issues)

## Acknowledgments

Special thanks to:
- The Ollama team for their excellent LLM runtime
- Our contributors and early adopters
- The open-source AI community

---

Made with ❤️ by Metis Analytics

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/metisos/aegis-framework",
    "name": "aegis-framework",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "ai, agents, llm, machine-learning, artificial-intelligence, multi-agent, ollama",
    "author": "Metis Analytics",
    "author_email": "cjohnson@metisos.com",
    "download_url": "https://files.pythonhosted.org/packages/d4/d1/7f60d039011b809a3eb4d72f2195e350dfc7c95b8d30c2e5cb6294f4444d/aegis_framework-0.1.18.tar.gz",
    "platform": null,
    "description": "# Aegis Multi-Agent Framework\n\nA powerful, extensible platform for building and deploying AI agent systems with seamless local LLM integration.\n\n## Overview\n\nThe Aegis Multi-Agent Framework provides a robust foundation for creating sophisticated multi-agent systems while maintaining simplicity and flexibility. Perfect for both researchers and developers looking to build advanced AI agent applications.\n\n### Key Features\n\n- **Modular Agent Architecture**\n  - Plug-and-play agent components\n  - Customizable agent behaviors\n  - Extensible design patterns\n\n- **Local LLM Integration**\n  - Native Ollama support\n  - Multiple model compatibility\n  - Optimized inference pipeline\n\n- **Advanced Task Management**\n  - Real-time task monitoring\n  - Parallel task execution\n  - Priority-based scheduling\n\n## Quick Start\n\n### Installation\n\n```bash\npip install aegis-framework\n```\n\n### Basic Usage\n\n```python\nfrom aegis_framework import MasterAIAgent, DesignAgent\n\n# Initialize a master agent\nagent = MasterAIAgent(model=\"gemma2:9b\")\n\n# Generate responses\nresponse = agent.answer_question(\n    \"What are the key principles of multi-agent systems?\"\n)\nprint(response)\n\n# Create a specialized design agent\ndesigner = DesignAgent(model=\"gemma2:9b\")\ndesign = designer.generate_new_design(\n    context=\"Create a microservices architecture\",\n    constraints=[\"scalability\", \"fault-tolerance\"]\n)\nprint(design)\n```\n\n## Creating Custom Agents\n\n```python\nfrom aegis_framework import MasterAIAgent\nfrom typing import Dict, Any, Optional\n\nclass DataAnalysisAgent(MasterAIAgent):\n    def __init__(\n        self,\n        model: str = \"gemma2:9b\",\n        custom_tasks: Optional[Dict[str, List[str]]] = None\n    ):\n        super().__init__(model=model)\n        \n        # Add specialized tasks\n        self.agent_task_map.update({\n            \"data_analysis\": [\n                \"analyze data\",\n                \"statistical analysis\",\n                \"trend analysis\",\n                \"data visualization\"\n            ]\n        })\n        \n        if custom_tasks:\n            self.agent_task_map.update(custom_tasks)\n    \n    def analyze_data(\n        self,\n        data: str,\n        analysis_type: str = \"comprehensive\"\n    ) -> Dict[str, Any]:\n        \"\"\"Perform data analysis with specified parameters.\"\"\"\n        prompt = f\"Analyze this {analysis_type} data: {data}\"\n        return self.perform_task(prompt)\n\n# Usage\nanalyst = DataAnalysisAgent()\nresults = analyst.analyze_data(\n    data=\"your_data_here\",\n    analysis_type=\"statistical\"\n)\n```\n\n## System Requirements\n\n- Python 3.7+\n- Ollama (for local LLM support)\n- 8GB+ RAM (recommended)\n- CUDA-compatible GPU (optional)\n\n## Example Scripts\n\nThe framework includes several example scripts to help you get started:\n\n1. `basic_usage.py`: Demonstrates core functionality\n2. `design_agent_example.py`: Shows advanced design capabilities\n3. `custom_agent_example.py`: Illustrates custom agent creation\n\nRun any example with the `--help` flag to see available options:\n```bash\npython examples/basic_usage.py --help\n```\n\n## Version History\n\nCurrent Version: 0.1.15\n\nKey Updates:\n- Enhanced local LLM integration\n- Improved design agent capabilities\n- Better error handling\n- More comprehensive examples\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Contact\n\n- **Author**: Metis Analytics\n- **Email**: cjohnson@metisos.com\n- **GitHub Issues**: [Report a bug](https://github.com/metisos/aegis_framework/issues)\n\n## Acknowledgments\n\nSpecial thanks to:\n- The Ollama team for their excellent LLM runtime\n- Our contributors and early adopters\n- The open-source AI community\n\n---\n\nMade with \u2764\ufe0f by Metis Analytics\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A comprehensive, extensible AI agent framework with local LLM integration",
    "version": "0.1.18",
    "project_urls": {
        "Bug Tracker": "https://github.com/metisos/aegis-framework/issues",
        "Homepage": "https://github.com/metisos/aegis-framework"
    },
    "split_keywords": [
        "ai",
        " agents",
        " llm",
        " machine-learning",
        " artificial-intelligence",
        " multi-agent",
        " ollama"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9582a707fa8f4a9cfa7cf164035d6debd0ecb57c01215f3872ef422c6fa87f61",
                "md5": "347e0e9aed76d930c331e516619e5300",
                "sha256": "78966ce348fe51b4b7aa57b685f1565781b9f07f4952c0179373b007e98475b9"
            },
            "downloads": -1,
            "filename": "aegis_framework-0.1.18-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "347e0e9aed76d930c331e516619e5300",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 25935,
            "upload_time": "2024-11-25T16:52:27",
            "upload_time_iso_8601": "2024-11-25T16:52:27.527719Z",
            "url": "https://files.pythonhosted.org/packages/95/82/a707fa8f4a9cfa7cf164035d6debd0ecb57c01215f3872ef422c6fa87f61/aegis_framework-0.1.18-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d4d17f60d039011b809a3eb4d72f2195e350dfc7c95b8d30c2e5cb6294f4444d",
                "md5": "ed2f5a1e85ce2dda145f4b363021ab6e",
                "sha256": "5b2765662da4c4f31bada6505832451b0def5971371dffec2b306b29d2c1d430"
            },
            "downloads": -1,
            "filename": "aegis_framework-0.1.18.tar.gz",
            "has_sig": false,
            "md5_digest": "ed2f5a1e85ce2dda145f4b363021ab6e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 26848,
            "upload_time": "2024-11-25T16:52:28",
            "upload_time_iso_8601": "2024-11-25T16:52:28.537420Z",
            "url": "https://files.pythonhosted.org/packages/d4/d1/7f60d039011b809a3eb4d72f2195e350dfc7c95b8d30c2e5cb6294f4444d/aegis_framework-0.1.18.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-25 16:52:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "metisos",
    "github_project": "aegis-framework",
    "github_not_found": true,
    "lcname": "aegis-framework"
}
        
Elapsed time: 0.38047s