agent-rails


Nameagent-rails JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
Summaryput your agents on guardrails
upload_time2025-09-03 03:13:45
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseMIT
keywords ai agents lifecycle management
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Rails | Lifecycle Orchestration for AI Agents

**Production-grade lifecycle orchestration for AI agents - monitor execution state and inject contextual guidance at critical moments**

Rails provides a framework-agnostic orchestration layer that creates a bidirectional communication channel between your agents and their lifecycle. Through a shared state store accessible to both Rails conditions and agent tools, Rails enables sophisticated feedback loops and intervention patterns.

```bash
pip install agent-rails
# or
pdm add agent-rails
```

**Built by: [Rizome Labs](https://rizome.dev) | Contact: [hi@rizome.dev](mailto:hi@rizome.dev)**

## Quick Start

```python
import asyncio
from rails import Rails, current_rails, counter, state, queue

# Define a tool that accesses Rails
def fetch_data(data):
    rails = current_rails()  # Access Rails from within tools
    rails.store.increment_sync('api_calls')
    
    # Tool can push tasks to queues
    if data.get('needs_processing'):
        rails.store.push_queue_sync('tasks', data['item'])
    
    return {"processed": True, "calls": rails.store.get_counter_sync('api_calls')}

async def main():
    rails = Rails()
    
    # Fluent condition builders with message injection
    rails.add_rule(
        condition=counter("errors") >= 2,
        action=lambda msgs: msgs + [{
            "role": "system", 
            "content": "Multiple errors detected. Switching to recovery mode."
        }]
    )
    
    # Queue-based orchestration
    rails.add_rule(
        condition=queue("tasks").length > 5,
        action=lambda msgs: msgs + [{
            "role": "system",
            "content": "Task queue is growing. Focus on completion before taking new tasks."
        }]
    )
    
    # State-based guidance
    rails.add_rule(
        condition=state("mode") == "exploration",
        action=lambda msgs: msgs + [{
            "role": "system",
            "content": "In exploration mode - be thorough but watch for diminishing returns."
        }]
    )
    
    async with rails:  # Context manager handles lifecycle
        messages = [{"role": "user", "content": "Help me process data"}]
        
        # Simulate tool calls and state changes
        for i in range(6):
            result = fetch_data({"item": i, "needs_processing": i > 2})
            if i > 3: 
                await rails.store.increment('errors')
            
            # Process messages through Rails conditions
            from rails import Message, Role
            rail_messages = [Message(role=Role(m["role"].upper()), content=m["content"]) for m in messages]
            processed = await rails.process(rail_messages)
            
            # Display any injected guidance
            for msg in processed[len(rail_messages):]:
                print(f"💬 Rails: {msg.content}")

asyncio.run(main())
```

## Architectural Principles

Rails implements a **bidirectional shared state model** that enables sophisticated lifecycle orchestration:

```
Agent Tools (Write State) ←→ Rails Store (Monitor State) ←→ Rails Conditions (Inject Context)
```

## Core Components

### 1. Fluent Condition Builders

Rails provides intuitive condition builders for common patterns:

```python
from rails import Rails, counter, state, queue

rails = Rails()

# Counter conditions with comparison operators
rails.add_rule(
    condition=counter("api_calls") >= 10,
    action=lambda msgs: msgs + [{"role": "system", "content": "API limit approaching"}]
)

# State conditions with equality checks
rails.add_rule(
    condition=state("mode") == "production",
    action=lambda msgs: msgs + [{"role": "system", "content": "In production - be careful"}]
)

# Queue conditions for task management
rails.add_rule(
    condition=queue("errors").is_empty,
    action=lambda msgs: msgs + [{"role": "system", "content": "All errors resolved!"}]
)

# Composite conditions
from rails import AndCondition, OrCondition, NotCondition

complex_condition = AndCondition(
    counter("attempts") >= 3,
    state("retry_enabled") == True
)
rails.add_rule(condition=complex_condition, action=retry_handler)
```

### 2. Shared State Store

The Rails store provides thread-safe state management accessible to both Rails and agent tools:

```python
from rails import Rails, current_rails

async with Rails() as rails:
    # Counters - for tracking numeric values
    await rails.store.increment("api_calls")  # +1
    await rails.store.increment("errors", 5)  # +5
    await rails.store.reset_counter("retries")
    count = await rails.store.get_counter("api_calls")
    
    # State values - for arbitrary data
    await rails.store.set("user_tier", "premium")
    await rails.store.set("config", {"debug": True, "timeout": 30})
    tier = await rails.store.get("user_tier", default="standard")
    
    # Queues - for task management (FIFO by default)
    await rails.store.push_queue("tasks", "process_data")
    await rails.store.push_queue("tasks", "generate_report")
    task = await rails.store.pop_queue("tasks")  # "process_data"
    pending = await rails.store.queue_length("tasks")  # 1
    all_tasks = await rails.store.get_queue("tasks")  # ["generate_report"]
    
    # Synchronous versions for use in tools
    rails.store.increment_sync("tool_calls")
    rails.store.set_sync("last_tool", "calculator")
    value = rails.store.get_sync("last_tool")
```

### 3. Tool Integration with `current_rails()`

Tools can access the Rails instance they're running within:

```python
from rails import current_rails

def data_processing_tool(data):
    """Tool that participates in lifecycle orchestration."""
    rails = current_rails()  # Get active Rails instance
    
    # Track tool usage
    rails.store.increment_sync('tool_calls')
    rails.store.increment_sync(f'tool_calls_data_processing')
    
    # Add tasks to queue for later processing
    if data.get('requires_validation'):
        rails.store.push_queue_sync('validation_queue', data['id'])
    
    # Update state based on tool results
    try:
        result = process_data(data)
        rails.store.increment_sync('successful_processing')
    except Exception as e:
        rails.store.increment_sync('processing_errors')
        rails.store.push_queue_sync('error_log', str(e))
        result = None
    
    # Check if we should slow down
    if rails.store.get_counter_sync('processing_errors') > 5:
        rails.store.set_sync('mode', 'careful')
    
    return result

# Tools automatically access Rails when called within Rails context
async with Rails() as rails:
    # Tool can now use current_rails() to access the store
    result = data_processing_tool({'data': 'value', 'requires_validation': True})
```

### 4. Message Injection System

Rails uses a functional approach to message transformation:

```python
from rails import Rails, Message, Role
from rails import AppendInjector, PrependInjector, ReplaceInjector
from rails import system, template

rails = Rails()

# Simple function-based injection
rails.add_rule(
    condition=counter("errors") > 0,
    action=lambda msgs: msgs + [Message(role=Role.SYSTEM, content="Error detected")]
)

# Using injector classes
error_injector = AppendInjector(
    message=Message(role=Role.SYSTEM, content="Please review the errors")
)
rails.add_rule(
    condition=counter("errors") >= 3,
    action=error_injector.inject
)

# Factory functions for common patterns
rails.add_rule(
    condition=state("mode") == "debug",
    action=system("Debug mode active - verbose output enabled")
)

# Template injection with store values
rails.add_rule(
    condition=state("user_name").exists,
    action=template("Hello {user_name}, you have {api_calls} API calls remaining")
)

# Process messages through all rules
messages = [Message(role=Role.USER, content="Hello")]
processed = await rails.process(messages)
```

### 5. Event Streaming & Observability

Rails emits events for all state changes, enabling monitoring and debugging:

```python
from rails import Rails

rails = Rails()

# Subscribe to events
async def event_handler(event):
    print(f"Event: {event.event_type} - {event.key} = {event.value}")

rails.store.subscribe_events(event_handler)

# All state changes emit events
await rails.store.increment("counter", triggered_by="user_action")
await rails.store.set("state", "active", triggered_by="system")
await rails.store.push_queue("tasks", "item", triggered_by="tool")

# Stream events for real-time monitoring
async for event in rails.store.event_stream():
    if event.event_type == "counter_increment":
        print(f"Counter {event.key} changed: {event.previous_value} → {event.value}")

# Get metrics snapshot
metrics = await rails.emit_metrics()
print(f"Active rules: {metrics['active_rules']}")
print(f"Store snapshot: {metrics['store_snapshot']}")
```

## Framework Integration

### Framework Adapters

Rails provides adapters for seamless integration with popular frameworks:

```python
from rails import Rails
from rails.adapters import create_adapter, BaseAdapter

# Generic adapter for any processing function
def my_agent(messages):
    # Your agent logic here
    return {"role": "assistant", "content": "Response"}

rails = Rails()
adapter = create_adapter(rails, my_agent)

async with adapter:
    result = await adapter.process_messages(messages)
```

### LangChain Integration

```python
from rails import Rails, counter
from rails.adapters import LangChainAdapter
from langchain_openai import ChatOpenAI

rails = Rails()

# Add Rails conditions
rails.add_rule(
    condition=counter("messages") >= 5,
    action=lambda msgs: msgs + [{
        "role": "system",
        "content": "This conversation is getting long. Consider summarizing."
    }]
)

# Create adapter
llm = ChatOpenAI(model="gpt-4")
adapter = LangChainAdapter(rails, llm)

# Rails processes messages before LangChain
result = await adapter.run(messages)
```

### Custom Framework Adapter

```python
from rails.adapters import BaseAdapter

class MyFrameworkAdapter(BaseAdapter):
    def __init__(self, rails, agent):
        super().__init__(rails)
        self.agent = agent
    
    async def process_messages(self, messages, **kwargs):
        # Apply Rails processing
        processed = await self.rails.process(messages)
        
        # Convert to framework format
        framework_messages = self.to_framework_format(processed)
        
        # Process with framework
        result = await self.agent.process(framework_messages)
        
        # Update Rails state
        await self.rails.store.increment("framework_calls")
        
        return result
```

## Advanced Patterns

### Queue-Based Task Management

```python
from rails import Rails, current_rails, queue

rails = Rails()

# Tool adds tasks to queue
def task_manager_tool(action, task=None):
    rails = current_rails()
    
    if action == "add":
        rails.store.push_queue_sync("tasks", task)
    elif action == "complete":
        completed = rails.store.pop_queue_sync("tasks")
        rails.store.increment_sync("completed_tasks")
        return completed
    
    return rails.store.get_queue_sync("tasks")

# Rails monitors queue and provides guidance
rails.add_rule(
    condition=queue("tasks").length > 5,
    action=lambda msgs: msgs + [{
        "role": "system",
        "content": "Multiple tasks pending. Focus on completion before adding more."
    }]
)

rails.add_rule(
    condition=queue("tasks").is_empty & (counter("idle_turns") > 2),
    action=lambda msgs: msgs + [{
        "role": "system", 
        "content": "No pending tasks. Consider asking the user for next steps."
    }]
)
```

### Error Recovery Pattern

```python
from rails import Rails, current_rails, counter

rails = Rails()

# Tool reports errors
def api_tool(endpoint):
    rails = current_rails()
    
    try:
        result = call_api(endpoint)
        rails.store.reset_counter_sync("consecutive_errors")
        return result
    except Exception as e:
        rails.store.increment_sync("errors")
        rails.store.increment_sync("consecutive_errors")
        rails.store.push_queue_sync("error_log", {
            "endpoint": endpoint,
            "error": str(e),
            "timestamp": datetime.now()
        })
        
        if rails.store.get_counter_sync("consecutive_errors") >= 3:
            rails.store.set_sync("mode", "recovery")
        
        return None

# Rails provides recovery guidance
rails.add_rule(
    condition=state("mode") == "recovery",
    action=lambda msgs: msgs + [{
        "role": "system",
        "content": "In recovery mode. Try alternative approaches or ask for help."
    }]
)
```

### Progress Tracking

```python
from rails import Rails, current_rails

rails = Rails()

# Tools update progress
def step_tool(step_name, status):
    rails = current_rails()
    
    rails.store.set_sync(f"step_{step_name}", status)
    
    if status == "complete":
        rails.store.increment_sync("completed_steps")
        total = rails.store.get_counter_sync("total_steps", 10)
        completed = rails.store.get_counter_sync("completed_steps")
        
        if completed == total:
            rails.store.set_sync("workflow_status", "complete")
    
    return {"step": step_name, "status": status}

# Rails provides progress updates
rails.add_rule(
    condition=counter("completed_steps") % 5 == 0,  # Every 5 steps
    action=lambda msgs: msgs + [{
        "role": "system",
        "content": f"Good progress! {rails.store.get_counter_sync('completed_steps')} steps completed."
    }]
)
```

## Configuration

### Store Configuration

```python
from rails import Rails, StoreConfig, QueueConfig

config = StoreConfig(
    persist_on_exit=True,
    persistence_path="./rails_state.json",
    emit_events=True,
    max_event_history=1000,
    default_queues={
        "tasks": QueueConfig(max_size=100, fifo=True, auto_dedup=True),
        "errors": QueueConfig(max_size=50, fifo=False),  # LIFO for errors
    }
)

rails = Rails(store=Store(config=config))
```

### Middleware Stack

```python
from rails import Rails

rails = Rails()

# Add middleware for processing
async def logging_middleware(messages, store):
    await store.increment("middleware_calls")
    print(f"Processing {len(messages)} messages")
    return messages

async def metric_middleware(messages, store):
    start = time.time()
    result = messages
    duration = time.time() - start
    await store.set("last_processing_time", duration)
    return result

rails.add_middleware(logging_middleware)
rails.add_middleware(metric_middleware)

# Process through middleware stack
result = await rails.process_with_middleware(messages)
```

## Installation & Development

### Installation

```bash
# Core Rails package
pip install agent-rails

# Or with PDM
pdm add agent-rails

# With optional framework dependencies
pip install agent-rails[adapters]  # includes framework adapters
pip install agent-rails[dev]       # includes development tools
```

### Development

```bash
# Clone and set up development environment
git clone https://github.com/rizome-dev/rails
cd rails
pdm install --dev

# Run tests
pdm run test
pdm run test-cov  # with coverage report

# Code quality
pdm run lint      # ruff linting
pdm run format    # black formatting  
pdm run typecheck # mypy type checking

# Build and publish (maintainers only)
pdm run build    # build wheel and sdist
pdm run check    # verify built packages
```

## API Reference

### Rails

- `Rails()` - Create Rails instance
- `add_rule(condition, action, name=None, priority=0)` - Add orchestration rule
- `process(messages)` - Process messages through rules
- `process_with_middleware(messages)` - Process through middleware stack
- `add_middleware(middleware)` - Add middleware function
- `emit_metrics()` - Get metrics snapshot

### Store

- `increment(key, amount=1)` - Increment counter
- `get_counter(key, default=0)` - Get counter value
- `reset_counter(key)` - Reset counter to zero
- `set(key, value)` - Set state value
- `get(key, default=None)` - Get state value
- `delete(key)` - Delete state key
- `push_queue(queue, item)` - Add item to queue
- `pop_queue(queue)` - Remove and return item from queue
- `get_queue(queue)` - Get all queue items
- `queue_length(queue)` - Get queue length
- `clear_queue(queue)` - Clear all items from queue
- `get_snapshot()` - Get complete state snapshot
- `clear()` - Clear all state

### Conditions

- `counter(key)` - Create counter condition builder
- `state(key)` - Create state condition builder  
- `queue(name)` - Create queue condition builder
- `AndCondition(*conditions)` - All conditions must be true
- `OrCondition(*conditions)` - Any condition must be true
- `NotCondition(condition)` - Negate condition
- `AlwaysCondition()` - Always true
- `NeverCondition()` - Always false

### Injectors

- `AppendInjector(message)` - Append message to end
- `PrependInjector(message)` - Prepend message to start
- `InsertInjector(message, index)` - Insert at index
- `ReplaceInjector(messages)` - Replace all messages
- `system(content, position="append")` - System message factory
- `template(template, role=Role.SYSTEM)` - Template message factory

---

**Built with ❤️ by [Rizome Labs, Inc.](https://rizome.dev)**

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "agent-rails",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "ai, agents, lifecycle, management",
    "author": null,
    "author_email": "samjtro <hi@samjtro.com>",
    "download_url": "https://files.pythonhosted.org/packages/b6/22/8323b1d64389842c68386c71fef75d14305aedc2370f699fac2cb250532c/agent_rails-0.2.1.tar.gz",
    "platform": null,
    "description": "# Rails | Lifecycle Orchestration for AI Agents\n\n**Production-grade lifecycle orchestration for AI agents - monitor execution state and inject contextual guidance at critical moments**\n\nRails provides a framework-agnostic orchestration layer that creates a bidirectional communication channel between your agents and their lifecycle. Through a shared state store accessible to both Rails conditions and agent tools, Rails enables sophisticated feedback loops and intervention patterns.\n\n```bash\npip install agent-rails\n# or\npdm add agent-rails\n```\n\n**Built by: [Rizome Labs](https://rizome.dev) | Contact: [hi@rizome.dev](mailto:hi@rizome.dev)**\n\n## Quick Start\n\n```python\nimport asyncio\nfrom rails import Rails, current_rails, counter, state, queue\n\n# Define a tool that accesses Rails\ndef fetch_data(data):\n    rails = current_rails()  # Access Rails from within tools\n    rails.store.increment_sync('api_calls')\n    \n    # Tool can push tasks to queues\n    if data.get('needs_processing'):\n        rails.store.push_queue_sync('tasks', data['item'])\n    \n    return {\"processed\": True, \"calls\": rails.store.get_counter_sync('api_calls')}\n\nasync def main():\n    rails = Rails()\n    \n    # Fluent condition builders with message injection\n    rails.add_rule(\n        condition=counter(\"errors\") >= 2,\n        action=lambda msgs: msgs + [{\n            \"role\": \"system\", \n            \"content\": \"Multiple errors detected. Switching to recovery mode.\"\n        }]\n    )\n    \n    # Queue-based orchestration\n    rails.add_rule(\n        condition=queue(\"tasks\").length > 5,\n        action=lambda msgs: msgs + [{\n            \"role\": \"system\",\n            \"content\": \"Task queue is growing. Focus on completion before taking new tasks.\"\n        }]\n    )\n    \n    # State-based guidance\n    rails.add_rule(\n        condition=state(\"mode\") == \"exploration\",\n        action=lambda msgs: msgs + [{\n            \"role\": \"system\",\n            \"content\": \"In exploration mode - be thorough but watch for diminishing returns.\"\n        }]\n    )\n    \n    async with rails:  # Context manager handles lifecycle\n        messages = [{\"role\": \"user\", \"content\": \"Help me process data\"}]\n        \n        # Simulate tool calls and state changes\n        for i in range(6):\n            result = fetch_data({\"item\": i, \"needs_processing\": i > 2})\n            if i > 3: \n                await rails.store.increment('errors')\n            \n            # Process messages through Rails conditions\n            from rails import Message, Role\n            rail_messages = [Message(role=Role(m[\"role\"].upper()), content=m[\"content\"]) for m in messages]\n            processed = await rails.process(rail_messages)\n            \n            # Display any injected guidance\n            for msg in processed[len(rail_messages):]:\n                print(f\"\ud83d\udcac Rails: {msg.content}\")\n\nasyncio.run(main())\n```\n\n## Architectural Principles\n\nRails implements a **bidirectional shared state model** that enables sophisticated lifecycle orchestration:\n\n```\nAgent Tools (Write State) \u2190\u2192 Rails Store (Monitor State) \u2190\u2192 Rails Conditions (Inject Context)\n```\n\n## Core Components\n\n### 1. Fluent Condition Builders\n\nRails provides intuitive condition builders for common patterns:\n\n```python\nfrom rails import Rails, counter, state, queue\n\nrails = Rails()\n\n# Counter conditions with comparison operators\nrails.add_rule(\n    condition=counter(\"api_calls\") >= 10,\n    action=lambda msgs: msgs + [{\"role\": \"system\", \"content\": \"API limit approaching\"}]\n)\n\n# State conditions with equality checks\nrails.add_rule(\n    condition=state(\"mode\") == \"production\",\n    action=lambda msgs: msgs + [{\"role\": \"system\", \"content\": \"In production - be careful\"}]\n)\n\n# Queue conditions for task management\nrails.add_rule(\n    condition=queue(\"errors\").is_empty,\n    action=lambda msgs: msgs + [{\"role\": \"system\", \"content\": \"All errors resolved!\"}]\n)\n\n# Composite conditions\nfrom rails import AndCondition, OrCondition, NotCondition\n\ncomplex_condition = AndCondition(\n    counter(\"attempts\") >= 3,\n    state(\"retry_enabled\") == True\n)\nrails.add_rule(condition=complex_condition, action=retry_handler)\n```\n\n### 2. Shared State Store\n\nThe Rails store provides thread-safe state management accessible to both Rails and agent tools:\n\n```python\nfrom rails import Rails, current_rails\n\nasync with Rails() as rails:\n    # Counters - for tracking numeric values\n    await rails.store.increment(\"api_calls\")  # +1\n    await rails.store.increment(\"errors\", 5)  # +5\n    await rails.store.reset_counter(\"retries\")\n    count = await rails.store.get_counter(\"api_calls\")\n    \n    # State values - for arbitrary data\n    await rails.store.set(\"user_tier\", \"premium\")\n    await rails.store.set(\"config\", {\"debug\": True, \"timeout\": 30})\n    tier = await rails.store.get(\"user_tier\", default=\"standard\")\n    \n    # Queues - for task management (FIFO by default)\n    await rails.store.push_queue(\"tasks\", \"process_data\")\n    await rails.store.push_queue(\"tasks\", \"generate_report\")\n    task = await rails.store.pop_queue(\"tasks\")  # \"process_data\"\n    pending = await rails.store.queue_length(\"tasks\")  # 1\n    all_tasks = await rails.store.get_queue(\"tasks\")  # [\"generate_report\"]\n    \n    # Synchronous versions for use in tools\n    rails.store.increment_sync(\"tool_calls\")\n    rails.store.set_sync(\"last_tool\", \"calculator\")\n    value = rails.store.get_sync(\"last_tool\")\n```\n\n### 3. Tool Integration with `current_rails()`\n\nTools can access the Rails instance they're running within:\n\n```python\nfrom rails import current_rails\n\ndef data_processing_tool(data):\n    \"\"\"Tool that participates in lifecycle orchestration.\"\"\"\n    rails = current_rails()  # Get active Rails instance\n    \n    # Track tool usage\n    rails.store.increment_sync('tool_calls')\n    rails.store.increment_sync(f'tool_calls_data_processing')\n    \n    # Add tasks to queue for later processing\n    if data.get('requires_validation'):\n        rails.store.push_queue_sync('validation_queue', data['id'])\n    \n    # Update state based on tool results\n    try:\n        result = process_data(data)\n        rails.store.increment_sync('successful_processing')\n    except Exception as e:\n        rails.store.increment_sync('processing_errors')\n        rails.store.push_queue_sync('error_log', str(e))\n        result = None\n    \n    # Check if we should slow down\n    if rails.store.get_counter_sync('processing_errors') > 5:\n        rails.store.set_sync('mode', 'careful')\n    \n    return result\n\n# Tools automatically access Rails when called within Rails context\nasync with Rails() as rails:\n    # Tool can now use current_rails() to access the store\n    result = data_processing_tool({'data': 'value', 'requires_validation': True})\n```\n\n### 4. Message Injection System\n\nRails uses a functional approach to message transformation:\n\n```python\nfrom rails import Rails, Message, Role\nfrom rails import AppendInjector, PrependInjector, ReplaceInjector\nfrom rails import system, template\n\nrails = Rails()\n\n# Simple function-based injection\nrails.add_rule(\n    condition=counter(\"errors\") > 0,\n    action=lambda msgs: msgs + [Message(role=Role.SYSTEM, content=\"Error detected\")]\n)\n\n# Using injector classes\nerror_injector = AppendInjector(\n    message=Message(role=Role.SYSTEM, content=\"Please review the errors\")\n)\nrails.add_rule(\n    condition=counter(\"errors\") >= 3,\n    action=error_injector.inject\n)\n\n# Factory functions for common patterns\nrails.add_rule(\n    condition=state(\"mode\") == \"debug\",\n    action=system(\"Debug mode active - verbose output enabled\")\n)\n\n# Template injection with store values\nrails.add_rule(\n    condition=state(\"user_name\").exists,\n    action=template(\"Hello {user_name}, you have {api_calls} API calls remaining\")\n)\n\n# Process messages through all rules\nmessages = [Message(role=Role.USER, content=\"Hello\")]\nprocessed = await rails.process(messages)\n```\n\n### 5. Event Streaming & Observability\n\nRails emits events for all state changes, enabling monitoring and debugging:\n\n```python\nfrom rails import Rails\n\nrails = Rails()\n\n# Subscribe to events\nasync def event_handler(event):\n    print(f\"Event: {event.event_type} - {event.key} = {event.value}\")\n\nrails.store.subscribe_events(event_handler)\n\n# All state changes emit events\nawait rails.store.increment(\"counter\", triggered_by=\"user_action\")\nawait rails.store.set(\"state\", \"active\", triggered_by=\"system\")\nawait rails.store.push_queue(\"tasks\", \"item\", triggered_by=\"tool\")\n\n# Stream events for real-time monitoring\nasync for event in rails.store.event_stream():\n    if event.event_type == \"counter_increment\":\n        print(f\"Counter {event.key} changed: {event.previous_value} \u2192 {event.value}\")\n\n# Get metrics snapshot\nmetrics = await rails.emit_metrics()\nprint(f\"Active rules: {metrics['active_rules']}\")\nprint(f\"Store snapshot: {metrics['store_snapshot']}\")\n```\n\n## Framework Integration\n\n### Framework Adapters\n\nRails provides adapters for seamless integration with popular frameworks:\n\n```python\nfrom rails import Rails\nfrom rails.adapters import create_adapter, BaseAdapter\n\n# Generic adapter for any processing function\ndef my_agent(messages):\n    # Your agent logic here\n    return {\"role\": \"assistant\", \"content\": \"Response\"}\n\nrails = Rails()\nadapter = create_adapter(rails, my_agent)\n\nasync with adapter:\n    result = await adapter.process_messages(messages)\n```\n\n### LangChain Integration\n\n```python\nfrom rails import Rails, counter\nfrom rails.adapters import LangChainAdapter\nfrom langchain_openai import ChatOpenAI\n\nrails = Rails()\n\n# Add Rails conditions\nrails.add_rule(\n    condition=counter(\"messages\") >= 5,\n    action=lambda msgs: msgs + [{\n        \"role\": \"system\",\n        \"content\": \"This conversation is getting long. Consider summarizing.\"\n    }]\n)\n\n# Create adapter\nllm = ChatOpenAI(model=\"gpt-4\")\nadapter = LangChainAdapter(rails, llm)\n\n# Rails processes messages before LangChain\nresult = await adapter.run(messages)\n```\n\n### Custom Framework Adapter\n\n```python\nfrom rails.adapters import BaseAdapter\n\nclass MyFrameworkAdapter(BaseAdapter):\n    def __init__(self, rails, agent):\n        super().__init__(rails)\n        self.agent = agent\n    \n    async def process_messages(self, messages, **kwargs):\n        # Apply Rails processing\n        processed = await self.rails.process(messages)\n        \n        # Convert to framework format\n        framework_messages = self.to_framework_format(processed)\n        \n        # Process with framework\n        result = await self.agent.process(framework_messages)\n        \n        # Update Rails state\n        await self.rails.store.increment(\"framework_calls\")\n        \n        return result\n```\n\n## Advanced Patterns\n\n### Queue-Based Task Management\n\n```python\nfrom rails import Rails, current_rails, queue\n\nrails = Rails()\n\n# Tool adds tasks to queue\ndef task_manager_tool(action, task=None):\n    rails = current_rails()\n    \n    if action == \"add\":\n        rails.store.push_queue_sync(\"tasks\", task)\n    elif action == \"complete\":\n        completed = rails.store.pop_queue_sync(\"tasks\")\n        rails.store.increment_sync(\"completed_tasks\")\n        return completed\n    \n    return rails.store.get_queue_sync(\"tasks\")\n\n# Rails monitors queue and provides guidance\nrails.add_rule(\n    condition=queue(\"tasks\").length > 5,\n    action=lambda msgs: msgs + [{\n        \"role\": \"system\",\n        \"content\": \"Multiple tasks pending. Focus on completion before adding more.\"\n    }]\n)\n\nrails.add_rule(\n    condition=queue(\"tasks\").is_empty & (counter(\"idle_turns\") > 2),\n    action=lambda msgs: msgs + [{\n        \"role\": \"system\", \n        \"content\": \"No pending tasks. Consider asking the user for next steps.\"\n    }]\n)\n```\n\n### Error Recovery Pattern\n\n```python\nfrom rails import Rails, current_rails, counter\n\nrails = Rails()\n\n# Tool reports errors\ndef api_tool(endpoint):\n    rails = current_rails()\n    \n    try:\n        result = call_api(endpoint)\n        rails.store.reset_counter_sync(\"consecutive_errors\")\n        return result\n    except Exception as e:\n        rails.store.increment_sync(\"errors\")\n        rails.store.increment_sync(\"consecutive_errors\")\n        rails.store.push_queue_sync(\"error_log\", {\n            \"endpoint\": endpoint,\n            \"error\": str(e),\n            \"timestamp\": datetime.now()\n        })\n        \n        if rails.store.get_counter_sync(\"consecutive_errors\") >= 3:\n            rails.store.set_sync(\"mode\", \"recovery\")\n        \n        return None\n\n# Rails provides recovery guidance\nrails.add_rule(\n    condition=state(\"mode\") == \"recovery\",\n    action=lambda msgs: msgs + [{\n        \"role\": \"system\",\n        \"content\": \"In recovery mode. Try alternative approaches or ask for help.\"\n    }]\n)\n```\n\n### Progress Tracking\n\n```python\nfrom rails import Rails, current_rails\n\nrails = Rails()\n\n# Tools update progress\ndef step_tool(step_name, status):\n    rails = current_rails()\n    \n    rails.store.set_sync(f\"step_{step_name}\", status)\n    \n    if status == \"complete\":\n        rails.store.increment_sync(\"completed_steps\")\n        total = rails.store.get_counter_sync(\"total_steps\", 10)\n        completed = rails.store.get_counter_sync(\"completed_steps\")\n        \n        if completed == total:\n            rails.store.set_sync(\"workflow_status\", \"complete\")\n    \n    return {\"step\": step_name, \"status\": status}\n\n# Rails provides progress updates\nrails.add_rule(\n    condition=counter(\"completed_steps\") % 5 == 0,  # Every 5 steps\n    action=lambda msgs: msgs + [{\n        \"role\": \"system\",\n        \"content\": f\"Good progress! {rails.store.get_counter_sync('completed_steps')} steps completed.\"\n    }]\n)\n```\n\n## Configuration\n\n### Store Configuration\n\n```python\nfrom rails import Rails, StoreConfig, QueueConfig\n\nconfig = StoreConfig(\n    persist_on_exit=True,\n    persistence_path=\"./rails_state.json\",\n    emit_events=True,\n    max_event_history=1000,\n    default_queues={\n        \"tasks\": QueueConfig(max_size=100, fifo=True, auto_dedup=True),\n        \"errors\": QueueConfig(max_size=50, fifo=False),  # LIFO for errors\n    }\n)\n\nrails = Rails(store=Store(config=config))\n```\n\n### Middleware Stack\n\n```python\nfrom rails import Rails\n\nrails = Rails()\n\n# Add middleware for processing\nasync def logging_middleware(messages, store):\n    await store.increment(\"middleware_calls\")\n    print(f\"Processing {len(messages)} messages\")\n    return messages\n\nasync def metric_middleware(messages, store):\n    start = time.time()\n    result = messages\n    duration = time.time() - start\n    await store.set(\"last_processing_time\", duration)\n    return result\n\nrails.add_middleware(logging_middleware)\nrails.add_middleware(metric_middleware)\n\n# Process through middleware stack\nresult = await rails.process_with_middleware(messages)\n```\n\n## Installation & Development\n\n### Installation\n\n```bash\n# Core Rails package\npip install agent-rails\n\n# Or with PDM\npdm add agent-rails\n\n# With optional framework dependencies\npip install agent-rails[adapters]  # includes framework adapters\npip install agent-rails[dev]       # includes development tools\n```\n\n### Development\n\n```bash\n# Clone and set up development environment\ngit clone https://github.com/rizome-dev/rails\ncd rails\npdm install --dev\n\n# Run tests\npdm run test\npdm run test-cov  # with coverage report\n\n# Code quality\npdm run lint      # ruff linting\npdm run format    # black formatting  \npdm run typecheck # mypy type checking\n\n# Build and publish (maintainers only)\npdm run build    # build wheel and sdist\npdm run check    # verify built packages\n```\n\n## API Reference\n\n### Rails\n\n- `Rails()` - Create Rails instance\n- `add_rule(condition, action, name=None, priority=0)` - Add orchestration rule\n- `process(messages)` - Process messages through rules\n- `process_with_middleware(messages)` - Process through middleware stack\n- `add_middleware(middleware)` - Add middleware function\n- `emit_metrics()` - Get metrics snapshot\n\n### Store\n\n- `increment(key, amount=1)` - Increment counter\n- `get_counter(key, default=0)` - Get counter value\n- `reset_counter(key)` - Reset counter to zero\n- `set(key, value)` - Set state value\n- `get(key, default=None)` - Get state value\n- `delete(key)` - Delete state key\n- `push_queue(queue, item)` - Add item to queue\n- `pop_queue(queue)` - Remove and return item from queue\n- `get_queue(queue)` - Get all queue items\n- `queue_length(queue)` - Get queue length\n- `clear_queue(queue)` - Clear all items from queue\n- `get_snapshot()` - Get complete state snapshot\n- `clear()` - Clear all state\n\n### Conditions\n\n- `counter(key)` - Create counter condition builder\n- `state(key)` - Create state condition builder  \n- `queue(name)` - Create queue condition builder\n- `AndCondition(*conditions)` - All conditions must be true\n- `OrCondition(*conditions)` - Any condition must be true\n- `NotCondition(condition)` - Negate condition\n- `AlwaysCondition()` - Always true\n- `NeverCondition()` - Always false\n\n### Injectors\n\n- `AppendInjector(message)` - Append message to end\n- `PrependInjector(message)` - Prepend message to start\n- `InsertInjector(message, index)` - Insert at index\n- `ReplaceInjector(messages)` - Replace all messages\n- `system(content, position=\"append\")` - System message factory\n- `template(template, role=Role.SYSTEM)` - Template message factory\n\n---\n\n**Built with \u2764\ufe0f by [Rizome Labs, Inc.](https://rizome.dev)**\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "put your agents on guardrails",
    "version": "0.2.1",
    "project_urls": {
        "Changelog": "https://github.com/rizome-dev/rails/blob/main/CHANGELOG.md",
        "Documentation": "https://github.com/rizome-dev/rails#readme",
        "Homepage": "https://github.com/rizome-dev/rails",
        "Issue Tracker": "https://github.com/rizome-dev/rails/issues",
        "Repository": "https://github.com/rizome-dev/rails"
    },
    "split_keywords": [
        "ai",
        " agents",
        " lifecycle",
        " management"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "52cd68595de1e5c1cdbf02f936454e9a1f5fddb66d717156fc0fe2f1531f13c9",
                "md5": "d7db6eec444b3301b5aff6036e7e0449",
                "sha256": "ec9271c7f91aeaf1bebc27e6b202f953b6e8f05a5d2068178a4bfc210c589af3"
            },
            "downloads": -1,
            "filename": "agent_rails-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d7db6eec444b3301b5aff6036e7e0449",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 38820,
            "upload_time": "2025-09-03T03:13:44",
            "upload_time_iso_8601": "2025-09-03T03:13:44.053573Z",
            "url": "https://files.pythonhosted.org/packages/52/cd/68595de1e5c1cdbf02f936454e9a1f5fddb66d717156fc0fe2f1531f13c9/agent_rails-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b6228323b1d64389842c68386c71fef75d14305aedc2370f699fac2cb250532c",
                "md5": "95447883e00ba235c79a87667893ca12",
                "sha256": "54b629f9b7004085925ca8aaf1e30508eacc79aa9159f1adada23d67e879ef86"
            },
            "downloads": -1,
            "filename": "agent_rails-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "95447883e00ba235c79a87667893ca12",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 39969,
            "upload_time": "2025-09-03T03:13:45",
            "upload_time_iso_8601": "2025-09-03T03:13:45.313693Z",
            "url": "https://files.pythonhosted.org/packages/b6/22/8323b1d64389842c68386c71fef75d14305aedc2370f699fac2cb250532c/agent_rails-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-03 03:13:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rizome-dev",
    "github_project": "rails",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "agent-rails"
}
        
Elapsed time: 2.75385s