# 🤖 AI Agents for Enhanced Chatbots
**Enterprise-grade AI agents that work together to create smarter, safer, and more efficient chatbots with conversation memory and advanced features.**
## 🎯 Quick Start
```python
from agentic_chatbot import create_openai_agent
# Basic agent with tools
agent = create_openai_agent(enable_tools=True)
response = agent.invoke("user_123", "What's the latest news about AI?")
# Full-featured agent with RAG
agent = create_openai_agent(enable_rag=True, enable_tools=True)
response = agent.invoke("user_123", "Tell me about quantum computing")
```
## ✨ Key Features
- **🛡️ Security Agent** - Detects malicious content and security threats
- **🧠 Context Agent** - Analyzes query relevance and conversation flow
- **🎯 Model Selection Agent** - Intelligently selects optimal LLM models
- **💬 Advanced Conversation Agent** - Multi-user memory with RAG, tools, and monitoring
## 🚀 Core Capabilities
- **Multi-LLM Support**: OpenAI, Anthropic, Google, Ollama
- **RAG Integration**: Document retrieval with ChromaDB and FAISS
- **Tool Integration**: Google Search, Wikipedia, custom tools
- **Multi-User Sessions**: Separate conversation history per user
- **Enterprise Storage**: Redis, MongoDB, PostgreSQL backends
- **Comprehensive Monitoring**: Token tracking, cost estimation, analytics
## 📦 Installation
```bash
pip install agentic-chatbot
```
## 🔧 Optional Features
```bash
# RAG capabilities
pip install agentic-chatbot[rag]
# Tool integration
pip install agentic-chatbot[tools]
# Enterprise features
pip install agentic-chatbot[enterprise]
# Development tools
pip install agentic-chatbot[dev]
```
## 📚 Documentation
- **Full Documentation**: [GitHub Repository](https://github.com/deuex-solutions/Agentic-Boilerplate)
- **Examples**: See `examples/` directory
- **Advanced Guide**: `COMPREHENSIVE_AGENT_GUIDE.md`
## 🤝 Contributing
We welcome contributions! Please see our [Contributing Guide](https://github.com/deuex-solutions/Agentic-Boilerplate) for details.
## 📄 License
MIT License - see [LICENSE](https://github.com/deuex-solutions/Agentic-Boilerplate/blob/main/LICENSE) file for details.
---
**Ready to build enterprise-grade AI chatbots?** 🚀
Made with ❤️ by the AI Agents Team
Raw data
{
"_id": null,
"home_page": "https://github.com/deuex-solutions/Agentic-Boilerplate",
"name": "agentic-chatbot",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "ai, agents, chatbot, security, context, model-selection, openai, gpt, llm, machine-learning, nlp, conversational-ai, rag, retrieval-augmented-generation, enterprise, multi-user, conversation-memory, vector-store, chromadb, redis, postgresql, anthropic, claude, google-gemini, ollama, langchain, streaming, async, tools, function-calling, monitoring, analytics",
"author": "Dhruv Yadav",
"author_email": "Dhruv Yadav <dhruv.y@deuexsolutions.com>",
"download_url": null,
"platform": null,
"description": "# \ud83e\udd16 AI Agents for Enhanced Chatbots\n\n**Enterprise-grade AI agents that work together to create smarter, safer, and more efficient chatbots with conversation memory and advanced features.**\n\n## \ud83c\udfaf Quick Start\n\n```python\nfrom agentic_chatbot import create_openai_agent\n\n# Basic agent with tools\nagent = create_openai_agent(enable_tools=True)\nresponse = agent.invoke(\"user_123\", \"What's the latest news about AI?\")\n\n# Full-featured agent with RAG\nagent = create_openai_agent(enable_rag=True, enable_tools=True)\nresponse = agent.invoke(\"user_123\", \"Tell me about quantum computing\")\n```\n\n## \u2728 Key Features\n\n- **\ud83d\udee1\ufe0f Security Agent** - Detects malicious content and security threats\n- **\ud83e\udde0 Context Agent** - Analyzes query relevance and conversation flow \n- **\ud83c\udfaf Model Selection Agent** - Intelligently selects optimal LLM models\n- **\ud83d\udcac Advanced Conversation Agent** - Multi-user memory with RAG, tools, and monitoring\n\n## \ud83d\ude80 Core Capabilities\n\n- **Multi-LLM Support**: OpenAI, Anthropic, Google, Ollama\n- **RAG Integration**: Document retrieval with ChromaDB and FAISS\n- **Tool Integration**: Google Search, Wikipedia, custom tools\n- **Multi-User Sessions**: Separate conversation history per user\n- **Enterprise Storage**: Redis, MongoDB, PostgreSQL backends\n- **Comprehensive Monitoring**: Token tracking, cost estimation, analytics\n\n## \ud83d\udce6 Installation\n\n```bash\npip install agentic-chatbot\n```\n\n## \ud83d\udd27 Optional Features\n\n```bash\n# RAG capabilities\npip install agentic-chatbot[rag]\n\n# Tool integration \npip install agentic-chatbot[tools]\n\n# Enterprise features\npip install agentic-chatbot[enterprise]\n\n# Development tools\npip install agentic-chatbot[dev]\n```\n\n## \ud83d\udcda Documentation\n\n- **Full Documentation**: [GitHub Repository](https://github.com/deuex-solutions/Agentic-Boilerplate)\n- **Examples**: See `examples/` directory\n- **Advanced Guide**: `COMPREHENSIVE_AGENT_GUIDE.md`\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Please see our [Contributing Guide](https://github.com/deuex-solutions/Agentic-Boilerplate) for details.\n\n## \ud83d\udcc4 License\n\nMIT License - see [LICENSE](https://github.com/deuex-solutions/Agentic-Boilerplate/blob/main/LICENSE) file for details.\n\n---\n\n**Ready to build enterprise-grade AI chatbots?** \ud83d\ude80\n\nMade with \u2764\ufe0f by the AI Agents Team\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Enterprise-grade AI agents for enhanced chatbot capabilities with RAG, security, and multi-user support",
"version": "2.0.1",
"project_urls": {
"Bug Tracker": "https://github.com/deuex-solutions/Agentic-Boilerplate/issues",
"Documentation": "https://github.com/deuex-solutions/Agentic-Boilerplate#readme",
"Homepage": "https://github.com/deuex-solutions/Agentic-Boilerplate",
"Repository": "https://github.com/deuex-solutions/Agentic-Boilerplate"
},
"split_keywords": [
"ai",
" agents",
" chatbot",
" security",
" context",
" model-selection",
" openai",
" gpt",
" llm",
" machine-learning",
" nlp",
" conversational-ai",
" rag",
" retrieval-augmented-generation",
" enterprise",
" multi-user",
" conversation-memory",
" vector-store",
" chromadb",
" redis",
" postgresql",
" anthropic",
" claude",
" google-gemini",
" ollama",
" langchain",
" streaming",
" async",
" tools",
" function-calling",
" monitoring",
" analytics"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "508ae5364b70c08b543208b3332c3f5d6359cceb10d73ffb0fe3c47096d5b786",
"md5": "a3bb5d3b0ece8050bb53bc0794c5b561",
"sha256": "86983c29fd6fc39a0f353a4e8724778ee94be7dc21ae602ba2f7b9af7add4903"
},
"downloads": -1,
"filename": "agentic_chatbot-2.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a3bb5d3b0ece8050bb53bc0794c5b561",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 50312,
"upload_time": "2025-09-15T17:18:02",
"upload_time_iso_8601": "2025-09-15T17:18:02.933779Z",
"url": "https://files.pythonhosted.org/packages/50/8a/e5364b70c08b543208b3332c3f5d6359cceb10d73ffb0fe3c47096d5b786/agentic_chatbot-2.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-15 17:18:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "deuex-solutions",
"github_project": "Agentic-Boilerplate",
"github_not_found": true,
"lcname": "agentic-chatbot"
}