agentor


Nameagentor JSON
Version 0.0.8 PyPI version JSON
download
home_pageNone
SummaryFastest way to build, prototype and deploy AI Agents.
upload_time2025-11-04 04:32:37
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords ai agents assistant hyper-personal llms openai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <img src="https://raw.githubusercontent.com/CelestoAI/agentor/main/assets/CelestoAI.png" alt="banner" width="500px"/>
</p>
<p align="center">
  Fastest way to build, prototype and deploy AI Agents with tools <mark><i>securely</i></mark>
</p>
<p align="center">
  <a href="https://docs.celesto.ai">Docs</a> |
  <a href="https://github.com/celestoai/agentor/tree/main/docs/examples">Examples</a>
</p>

[![๐Ÿ’ป Try Celesto AI](https://img.shields.io/badge/%F0%9F%92%BB_Try_CelestoAI-Click_Here-ff6b2c?style=flat)](https://celesto.ai)
[![PyPI version](https://img.shields.io/pypi/v/agentor.svg?color=brightgreen&label=PyPI&style=flat)](https://pypi.org/project/agentor/)
[![Tests](https://github.com/CelestoAI/agentor/actions/workflows/test.yml/badge.svg)](https://github.com/CelestoAI/agentor/actions/workflows/test.yml)
![PyPI - Downloads](https://img.shields.io/pypi/dm/agentor)
[![License: Apache 2.0](https://img.shields.io/badge/License-Apache_2.0-yellow?style=flat)](https://opensource.org/licenses/Apache-2.0)
[![Discord](https://img.shields.io/badge/Join%20Us%20on%20Discord-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/KNb5UkrAmm)

## Agentor

Agentor is an open-source framework that makes it easy to build multi-agent system with secure integrations across email, calendars, CRMs, and more.

It lets you connect LLMs to tools โ€” like email, calendar, CRMs, or any data stack.

## ๐Ÿš… Quick Start

### Installation

The recommended method of installing `agentor` is with pip from PyPI.

```bash
pip install agentor
```

<details>
  <summary>More ways...</summary>

  You can also install the latest bleeding edge version (could be unstable) of `agentor`, should you feel motivated enough, as follows:
  
  ```bash
  pip install git+https://github.com/celestoai/agentor@main
  ```
</details>


## Agents API

Build an Agent, connect external tools or MCP Server and serve as an API in just few lines of code:

```diff
from agentor import Agentor, function_tool

@function_tool
def get_weather(city: str):
    """Get the weather of city"""
    return f"Weather in {city} is sunny"

agent = Agentor(
    name="Weather Agent",
    model="gpt-5-mini",
-    tools=[get_weather],  # Bring your own tool, or
+    tools=["get_weather"],  # 100+ Celesto AI managed tools โ€” plug-and-play
)

result = agent.run("What is the weather in London?")  # Run the Agent
print(result)

# Serve Agent with a single line of code
+ agent.serve()
```

Run the following command to query the Agent server:

```bash
curl -X 'POST' \
  'http://localhost:8000/chat' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "input": "What is the weather in London?"
}'
```

## LiteMCP

Lightweight [Model Context Protocol](https://modelcontextprotocol.io) server with FastAPI-like decorators:

```python
from agentor.mcp import LiteMCP

app = LiteMCP(name="my-server", version="1.0.0")


@app.tool(description="Get weather")
def get_weather(location: str) -> str:
    return f"Weather in {location}: Sunny, 72ยฐF"


if __name__ == "__main__":
    app.run()  # or: uvicorn server:app
```

### LiteMCP vs FastMCP

**Key Difference:** LiteMCP is a native ASGI app that integrates directly with FastAPI using standard patterns. FastMCP requires mounting as a sub-application, diverging from standard FastAPI primitives.

| Feature | LiteMCP | FastMCP |
|---------|---------|---------|
| Integration | Native ASGI | Requires mounting |
| FastAPI Patterns | โœ… Standard | โš ๏ธ Diverges |
| Built-in CORS | โœ… | โŒ |
| Custom Methods | โœ… Full | โš ๏ธ Limited |
| With Existing Backend | โœ… Easy | โš ๏ธ Complex |

๐Ÿ“– [Learn more](https://docs.celesto.ai/agentor/tools/LiteMCP)

## Agent-to-Agent (A2A) Protocol

The A2A Protocol defines standard specifications for agent communication and message formatting, enabling seamless interoperability between different AI agents. Agentor provides built-in A2A support, making it effortless to create agents that can discover, communicate, and collaborate with other A2A-compatible agents.

**Key Features:**
- **Agent Discovery**: Automatic agent card generation at `/.well-known/agent-card.json` describing agent capabilities, skills, and endpoints
- **Standard Communication**: JSON-RPC based messaging with support for both streaming and non-streaming responses
- **Rich Interactions**: Built-in support for tasks, status updates, and artifact sharing between agents

**Quick Example:**

```python
from agentor import Agentor

agent = Agentor(
    name="Weather Agent",
    model="gpt-5-mini",
    tools=["get_weather"],
)

# Serve agent with A2A protocol enabled automatically
agent.serve(port=8000)
# Agent card available at: http://localhost:8000/.well-known/agent-card.json
```

Any agent served with `agent.serve()` automatically becomes A2A-compatible with standardized endpoints for message sending, streaming, and task management.

๐Ÿ“– [Learn more](https://docs.celesto.ai/agentor/agent-to-agent)

## ๐Ÿš€ Features

<p>
  ๐Ÿ”ง <b>Build with OSS</b> &nbsp; | &nbsp; 
  ๐Ÿงก <a href="https://celesto.ai" target="_blank"><b>Managed Multi-Agent Platform</b></a>
</p>

| Feature | Description |
|-----------------------------------------------|-----------------------------------------------|
| โœ… Pre-built agents | Ready-to-use tools |
| ๐Ÿ” Secure integrations | Email, calendar, CRMs, and more |
| ๐Ÿš€ LiteMCP | The only **full FastAPI compatible** MCP Server with decorator API |
| ๐Ÿฆพ [A2A Protocol](https://a2a-protocol.org/latest/topics/what-is-a2a/) | [Docs](https://docs.celesto.ai/agentor/agent-to-agent) |
| โ˜๏ธ [Easy agent deployment](https://github.com/CelestoAI/agentor/tree/main/examples/agent-server) | `agentor deploy` |

### Managed Tool Hub (ready-to-use collection of tools)

Use Celesto [Tool Hub](https://celesto.ai/toolhub) for a realtime access to weather data and 100+ tools.

```python
from agentor import CelestoSDK

client = CelestoSDK(CELESTOAI_API_KEY)

# List all available tools
client.toolhub.list_tools()

# Run the weather tool for a specific location
client.toolhub.run_weather_tool("London")

# Run the Google email tool
client.toolhub.run_list_google_emails(limit=5)
```

## ๐Ÿค Contributing

We'd love your help making Agentor even better! Please read our [Contributing Guidelines](.github/CONTRIBUTING.md) and [Code of Conduct](.github/CODE_OF_CONDUCT.md).

## ๐Ÿ“„ License

Apache 2.0 License - see [LICENSE](LICENSE) for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "agentor",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "AI, Agents, Assistant, Hyper-personal, LLMs, OpenAI",
    "author": null,
    "author_email": "Aniket Maurya <aniket@celesto.ai>",
    "download_url": "https://files.pythonhosted.org/packages/e6/7c/a00549d1b9ee0d7becefdb027251da84968806102a6f6c7b56b3b940de61/agentor-0.0.8.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n  <img src=\"https://raw.githubusercontent.com/CelestoAI/agentor/main/assets/CelestoAI.png\" alt=\"banner\" width=\"500px\"/>\n</p>\n<p align=\"center\">\n  Fastest way to build, prototype and deploy AI Agents with tools <mark><i>securely</i></mark>\n</p>\n<p align=\"center\">\n  <a href=\"https://docs.celesto.ai\">Docs</a> |\n  <a href=\"https://github.com/celestoai/agentor/tree/main/docs/examples\">Examples</a>\n</p>\n\n[![\ud83d\udcbb Try Celesto AI](https://img.shields.io/badge/%F0%9F%92%BB_Try_CelestoAI-Click_Here-ff6b2c?style=flat)](https://celesto.ai)\n[![PyPI version](https://img.shields.io/pypi/v/agentor.svg?color=brightgreen&label=PyPI&style=flat)](https://pypi.org/project/agentor/)\n[![Tests](https://github.com/CelestoAI/agentor/actions/workflows/test.yml/badge.svg)](https://github.com/CelestoAI/agentor/actions/workflows/test.yml)\n![PyPI - Downloads](https://img.shields.io/pypi/dm/agentor)\n[![License: Apache 2.0](https://img.shields.io/badge/License-Apache_2.0-yellow?style=flat)](https://opensource.org/licenses/Apache-2.0)\n[![Discord](https://img.shields.io/badge/Join%20Us%20on%20Discord-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/KNb5UkrAmm)\n\n## Agentor\n\nAgentor is an open-source framework that makes it easy to build multi-agent system with secure integrations across email, calendars, CRMs, and more.\n\nIt lets you connect LLMs to tools \u2014 like email, calendar, CRMs, or any data stack.\n\n## \ud83d\ude85 Quick Start\n\n### Installation\n\nThe recommended method of installing `agentor` is with pip from PyPI.\n\n```bash\npip install agentor\n```\n\n<details>\n  <summary>More ways...</summary>\n\n  You can also install the latest bleeding edge version (could be unstable) of `agentor`, should you feel motivated enough, as follows:\n  \n  ```bash\n  pip install git+https://github.com/celestoai/agentor@main\n  ```\n</details>\n\n\n## Agents API\n\nBuild an Agent, connect external tools or MCP Server and serve as an API in just few lines of code:\n\n```diff\nfrom agentor import Agentor, function_tool\n\n@function_tool\ndef get_weather(city: str):\n    \"\"\"Get the weather of city\"\"\"\n    return f\"Weather in {city} is sunny\"\n\nagent = Agentor(\n    name=\"Weather Agent\",\n    model=\"gpt-5-mini\",\n-    tools=[get_weather],  # Bring your own tool, or\n+    tools=[\"get_weather\"],  # 100+ Celesto AI managed tools \u2014 plug-and-play\n)\n\nresult = agent.run(\"What is the weather in London?\")  # Run the Agent\nprint(result)\n\n# Serve Agent with a single line of code\n+ agent.serve()\n```\n\nRun the following command to query the Agent server:\n\n```bash\ncurl -X 'POST' \\\n  'http://localhost:8000/chat' \\\n  -H 'accept: application/json' \\\n  -H 'Content-Type: application/json' \\\n  -d '{\n  \"input\": \"What is the weather in London?\"\n}'\n```\n\n## LiteMCP\n\nLightweight [Model Context Protocol](https://modelcontextprotocol.io) server with FastAPI-like decorators:\n\n```python\nfrom agentor.mcp import LiteMCP\n\napp = LiteMCP(name=\"my-server\", version=\"1.0.0\")\n\n\n@app.tool(description=\"Get weather\")\ndef get_weather(location: str) -> str:\n    return f\"Weather in {location}: Sunny, 72\u00b0F\"\n\n\nif __name__ == \"__main__\":\n    app.run()  # or: uvicorn server:app\n```\n\n### LiteMCP vs FastMCP\n\n**Key Difference:** LiteMCP is a native ASGI app that integrates directly with FastAPI using standard patterns. FastMCP requires mounting as a sub-application, diverging from standard FastAPI primitives.\n\n| Feature | LiteMCP | FastMCP |\n|---------|---------|---------|\n| Integration | Native ASGI | Requires mounting |\n| FastAPI Patterns | \u2705 Standard | \u26a0\ufe0f Diverges |\n| Built-in CORS | \u2705 | \u274c |\n| Custom Methods | \u2705 Full | \u26a0\ufe0f Limited |\n| With Existing Backend | \u2705 Easy | \u26a0\ufe0f Complex |\n\n\ud83d\udcd6 [Learn more](https://docs.celesto.ai/agentor/tools/LiteMCP)\n\n## Agent-to-Agent (A2A) Protocol\n\nThe A2A Protocol defines standard specifications for agent communication and message formatting, enabling seamless interoperability between different AI agents. Agentor provides built-in A2A support, making it effortless to create agents that can discover, communicate, and collaborate with other A2A-compatible agents.\n\n**Key Features:**\n- **Agent Discovery**: Automatic agent card generation at `/.well-known/agent-card.json` describing agent capabilities, skills, and endpoints\n- **Standard Communication**: JSON-RPC based messaging with support for both streaming and non-streaming responses\n- **Rich Interactions**: Built-in support for tasks, status updates, and artifact sharing between agents\n\n**Quick Example:**\n\n```python\nfrom agentor import Agentor\n\nagent = Agentor(\n    name=\"Weather Agent\",\n    model=\"gpt-5-mini\",\n    tools=[\"get_weather\"],\n)\n\n# Serve agent with A2A protocol enabled automatically\nagent.serve(port=8000)\n# Agent card available at: http://localhost:8000/.well-known/agent-card.json\n```\n\nAny agent served with `agent.serve()` automatically becomes A2A-compatible with standardized endpoints for message sending, streaming, and task management.\n\n\ud83d\udcd6 [Learn more](https://docs.celesto.ai/agentor/agent-to-agent)\n\n## \ud83d\ude80 Features\n\n<p>\n  \ud83d\udd27 <b>Build with OSS</b> &nbsp; | &nbsp; \n  \ud83e\udde1 <a href=\"https://celesto.ai\" target=\"_blank\"><b>Managed Multi-Agent Platform</b></a>\n</p>\n\n| Feature | Description |\n|-----------------------------------------------|-----------------------------------------------|\n| \u2705 Pre-built agents | Ready-to-use tools |\n| \ud83d\udd10 Secure integrations | Email, calendar, CRMs, and more |\n| \ud83d\ude80 LiteMCP | The only **full FastAPI compatible** MCP Server with decorator API |\n| \ud83e\uddbe [A2A Protocol](https://a2a-protocol.org/latest/topics/what-is-a2a/) | [Docs](https://docs.celesto.ai/agentor/agent-to-agent) |\n| \u2601\ufe0f [Easy agent deployment](https://github.com/CelestoAI/agentor/tree/main/examples/agent-server) | `agentor deploy` |\n\n### Managed Tool Hub (ready-to-use collection of tools)\n\nUse Celesto [Tool Hub](https://celesto.ai/toolhub) for a realtime access to weather data and 100+ tools.\n\n```python\nfrom agentor import CelestoSDK\n\nclient = CelestoSDK(CELESTOAI_API_KEY)\n\n# List all available tools\nclient.toolhub.list_tools()\n\n# Run the weather tool for a specific location\nclient.toolhub.run_weather_tool(\"London\")\n\n# Run the Google email tool\nclient.toolhub.run_list_google_emails(limit=5)\n```\n\n## \ud83e\udd1d Contributing\n\nWe'd love your help making Agentor even better! Please read our [Contributing Guidelines](.github/CONTRIBUTING.md) and [Code of Conduct](.github/CODE_OF_CONDUCT.md).\n\n## \ud83d\udcc4 License\n\nApache 2.0 License - see [LICENSE](LICENSE) for details.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Fastest way to build, prototype and deploy AI Agents.",
    "version": "0.0.8",
    "project_urls": null,
    "split_keywords": [
        "ai",
        " agents",
        " assistant",
        " hyper-personal",
        " llms",
        " openai"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c231e4ea0c927a67001a3ad97fd338bce51de06aca7121ef8a82af3416ab098b",
                "md5": "83e0b7390260140b465103dcd30f6e83",
                "sha256": "503cb0895478f24e0f9e07b0649cbaa2d4be6cbb321619e639914b50496ceda2"
            },
            "downloads": -1,
            "filename": "agentor-0.0.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "83e0b7390260140b465103dcd30f6e83",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 47324,
            "upload_time": "2025-11-04T04:32:36",
            "upload_time_iso_8601": "2025-11-04T04:32:36.044582Z",
            "url": "https://files.pythonhosted.org/packages/c2/31/e4ea0c927a67001a3ad97fd338bce51de06aca7121ef8a82af3416ab098b/agentor-0.0.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e67ca00549d1b9ee0d7becefdb027251da84968806102a6f6c7b56b3b940de61",
                "md5": "20d623e552fe000e09037cc9b0f361be",
                "sha256": "10cd28f97815a78e570f482f97e05dfd3066fedd34d5251b67ef8104d7532ca8"
            },
            "downloads": -1,
            "filename": "agentor-0.0.8.tar.gz",
            "has_sig": false,
            "md5_digest": "20d623e552fe000e09037cc9b0f361be",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 3191977,
            "upload_time": "2025-11-04T04:32:37",
            "upload_time_iso_8601": "2025-11-04T04:32:37.828263Z",
            "url": "https://files.pythonhosted.org/packages/e6/7c/a00549d1b9ee0d7becefdb027251da84968806102a6f6c7b56b3b940de61/agentor-0.0.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-11-04 04:32:37",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "agentor"
}
        
Elapsed time: 0.89114s