ai-context-compressor


Nameai-context-compressor JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryAI-powered text compression for RAG systems and API calls to reduce token usage and costs
upload_time2025-08-14 19:53:37
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords ai nlp text-compression rag tokens api-optimization semantic-compression llm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Context Compressor

[![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://python.org)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Code Style: Black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

**AI-powered text compression for RAG systems and API calls to reduce token usage and costs while preserving semantic meaning.**

## πŸš€ Features

- **Intelligent Compression**: Multiple compression strategies including extractive, abstractive, semantic, and hybrid approaches
- **Quality Evaluation**: Comprehensive quality metrics including ROUGE scores, semantic similarity, and entity preservation
- **Query-Aware**: Context-aware compression that prioritizes relevant content based on user queries
- **Batch Processing**: Efficient parallel processing of multiple texts
- **Caching System**: In-memory caching with TTL for improved performance
- **Framework Integrations**: Easy integration with LangChain, LlamaIndex, and OpenAI
- **REST API**: FastAPI-based microservice for easy deployment
- **Extensible**: Plugin system for custom compression strategies

## πŸ“¦ Installation

### Basic Installation

```bash
pip install context-compressor
```

### With ML Dependencies (for advanced strategies)

```bash
pip install "context-compressor[ml]"
```

### With API Dependencies (for REST API)

```bash
pip install "context-compressor[api]"
```

### Full Installation (all features)

```bash
pip install "context-compressor[full]"
```

### Development Installation

```bash
git clone https://github.com/context-compressor/context-compressor.git
cd context-compressor
pip install -e ".[dev]"
```

## 🏁 Quick Start

### Basic Usage

```python
from context_compressor import ContextCompressor

# Initialize the compressor
compressor = ContextCompressor()

# Compress text
text = """
Artificial Intelligence (AI) is a broad field of computer science focused on 
creating systems that can perform tasks that typically require human intelligence. 
These tasks include learning, reasoning, problem-solving, perception, and language 
understanding. AI has applications in various domains including healthcare, finance, 
transportation, and entertainment. Machine learning, a subset of AI, enables 
computers to learn and improve from experience without being explicitly programmed.
"""

result = compressor.compress(text, target_ratio=0.5)

print("Original text:")
print(text)
print(f"\nCompressed text ({result.actual_ratio:.1%} of original):")
print(result.compressed_text)
print(f"\nTokens saved: {result.tokens_saved}")
print(f"Quality score: {result.quality_metrics.overall_score:.2f}")
```

### Query-Aware Compression

```python
# Compress with focus on specific topic
query = "machine learning applications"

result = compressor.compress(
    text=text,
    target_ratio=0.3,
    query=query
)

print(f"Query-focused compression: {result.compressed_text}")
```

### Batch Processing

```python
texts = [
    "First document about AI and machine learning...",
    "Second document about natural language processing...",
    "Third document about computer vision..."
]

batch_result = compressor.compress_batch(
    texts=texts,
    target_ratio=0.4,
    parallel=True
)

print(f"Processed {len(batch_result.results)} texts")
print(f"Average compression ratio: {batch_result.average_compression_ratio:.1%}")
print(f"Total tokens saved: {batch_result.total_tokens_saved}")
```

## πŸ”§ Configuration

### Strategy Selection

```python
from context_compressor import ContextCompressor
from context_compressor.strategies import ExtractiveStrategy

# Use specific strategy
extractive_strategy = ExtractiveStrategy(
    scoring_method="tfidf",
    min_sentence_length=20,
    position_bias=0.2
)

compressor = ContextCompressor(strategies=[extractive_strategy])

# Or let the system auto-select
compressor = ContextCompressor(default_strategy="auto")
```

### Quality Evaluation Settings

```python
compressor = ContextCompressor(
    enable_quality_evaluation=True,
    enable_caching=True,
    cache_ttl=3600  # 1 hour
)

result = compressor.compress(text, target_ratio=0.5)

# Access detailed quality metrics
print(f"ROUGE-1: {result.quality_metrics.rouge_1:.3f}")
print(f"ROUGE-2: {result.quality_metrics.rouge_2:.3f}")
print(f"ROUGE-L: {result.quality_metrics.rouge_l:.3f}")
print(f"Semantic similarity: {result.quality_metrics.semantic_similarity:.3f}")
print(f"Entity preservation: {result.quality_metrics.entity_preservation_rate:.3f}")
```

## 🎯 Compression Strategies

### 1. Extractive Strategy (Default)

Selects important sentences based on TF-IDF, position, and query relevance:

```python
from context_compressor.strategies import ExtractiveStrategy

strategy = ExtractiveStrategy(
    scoring_method="combined",  # "tfidf", "frequency", "position", "combined"
    min_sentence_length=10,
    position_bias=0.2,
    query_weight=0.3
)
```

### 2. Abstractive Strategy (Requires ML dependencies)

Uses transformer models for summarization:

```python
from context_compressor.strategies import AbstractiveStrategy

strategy = AbstractiveStrategy(
    model_name="facebook/bart-large-cnn",
    max_length=150,
    min_length=50
)
```

### 3. Semantic Strategy (Requires ML dependencies)

Groups similar content using embeddings:

```python
from context_compressor.strategies import SemanticStrategy

strategy = SemanticStrategy(
    embedding_model="all-MiniLM-L6-v2",
    clustering_method="kmeans",
    n_clusters="auto"
)
```

### 4. Hybrid Strategy

Combines multiple strategies for optimal results:

```python
from context_compressor.strategies import HybridStrategy

strategy = HybridStrategy(
    primary_strategy="extractive",
    secondary_strategy="semantic",
    combination_method="weighted"
)
```

## πŸ”Œ Integrations

### LangChain Integration

```python
from context_compressor.integrations.langchain import ContextCompressorTransformer

# Use as a document transformer
transformer = ContextCompressorTransformer(
    compressor=compressor,
    target_ratio=0.6
)

# Apply to document chain
compressed_docs = transformer.transform_documents(documents)
```

### OpenAI Integration

```python
from context_compressor.integrations.openai import compress_for_openai

# Compress text before sending to OpenAI API
compressed_prompt = compress_for_openai(
    text=long_context,
    target_ratio=0.4,
    model="gpt-4"  # Automatically uses appropriate tokenizer
)
```

## 🌐 REST API

Start the API server:

```bash
uvicorn context_compressor.api.main:app --reload
```

### API Endpoints

#### Compress Text

```bash
curl -X POST "http://localhost:8000/compress" \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Your long text here...",
    "target_ratio": 0.5,
    "strategy": "extractive",
    "query": "optional query"
  }'
```

#### Batch Compression

```bash
curl -X POST "http://localhost:8000/compress/batch" \
  -H "Content-Type: application/json" \
  -d '{
    "texts": ["Text 1...", "Text 2...", "Text 3..."],
    "target_ratio": 0.4,
    "parallel": true
  }'
```

#### List Available Strategies

```bash
curl "http://localhost:8000/strategies"
```

### API Documentation

Visit `http://localhost:8000/docs` for interactive API documentation.

## πŸ“Š Quality Metrics

The system provides comprehensive quality evaluation:

- **Semantic Similarity**: Measures content preservation using word embeddings
- **ROUGE Scores**: Standard summarization metrics (ROUGE-1, ROUGE-2, ROUGE-L)
- **Entity Preservation**: Tracks retention of named entities, numbers, dates
- **Readability**: Flesch Reading Ease score for text readability
- **Overall Score**: Weighted combination of all metrics

## πŸŽ›οΈ Advanced Configuration

### Custom Strategy Development

```python
from context_compressor.strategies.base import CompressionStrategy
from context_compressor.core.models import StrategyMetadata

class CustomStrategy(CompressionStrategy):
    def _create_metadata(self) -> StrategyMetadata:
        return StrategyMetadata(
            name="custom",
            description="Custom compression strategy",
            version="1.0.0",
            author="Your Name"
        )
    
    def _compress_text(self, text: str, target_ratio: float, **kwargs) -> str:
        # Implement your compression logic
        return compressed_text

# Register and use
compressor.register_strategy(CustomStrategy())
```

### Cache Configuration

```python
from context_compressor.utils.cache import CacheManager

# Custom cache manager
cache_manager = CacheManager(
    ttl=7200,  # 2 hours
    max_size=2000,
    cleanup_interval=600  # 10 minutes
)

compressor = ContextCompressor(cache_manager=cache_manager)
```

## πŸ“ˆ Performance Optimization

### Batch Processing Tips

```python
# For large batches, adjust worker count
batch_result = compressor.compress_batch(
    texts=large_text_list,
    target_ratio=0.5,
    parallel=True,
    max_workers=8  # Adjust based on your system
)
```

### Memory Management

```python
# For memory-constrained environments
compressor = ContextCompressor(
    enable_caching=False,  # Disable caching
    enable_quality_evaluation=False  # Skip quality evaluation
)
```

## πŸ§ͺ Testing

Run the test suite:

```bash
# Run all tests
pytest

# Run with coverage
pytest --cov=context_compressor

# Run only unit tests
pytest -m "not integration"

# Run specific test file
pytest tests/test_compressor.py
```

## πŸ“š Examples

Check out the `examples/` directory for comprehensive usage examples:

- `examples/basic_usage.py` - Basic compression examples
- `examples/batch_processing.py` - Batch processing examples
- `examples/quality_evaluation.py` - Quality metrics examples
- `examples/custom_strategy.py` - Custom strategy development
- `examples/integration_examples.py` - Framework integration examples
- `examples/api_client.py` - REST API client examples

## 🀝 Contributing

We welcome contributions! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.

### Development Setup

```bash
git clone https://github.com/context-compressor/context-compressor.git
cd context-compressor
pip install -e ".[dev]"
pre-commit install
```

### Running Tests

```bash
pytest
black .
isort .
flake8 .
mypy src/
```

## πŸ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## πŸ†˜ Support

- **Documentation**: [https://context-compressor.readthedocs.io](https://context-compressor.readthedocs.io)
- **Issues**: [GitHub Issues](https://github.com/context-compressor/context-compressor/issues)
- **Discussions**: [GitHub Discussions](https://github.com/context-compressor/context-compressor/discussions)

## πŸ—ΊοΈ Roadmap

- [ ] Additional compression strategies (neural, attention-based)
- [ ] Multi-language support
- [ ] Integration with more LLM providers
- [ ] GUI interface
- [ ] Cloud deployment templates
- [ ] Performance benchmarking suite

## πŸ“– Citation

If you use Context Compressor in your research, please cite:

```bibtex
@software{context_compressor,
  title={Context Compressor: AI-Powered Text Compression for RAG Systems},
  author={Context Compressor Team},
  url={https://github.com/context-compressor/context-compressor},
  year={2024}
}
```

---

**Made with ❀️ for the AI community**

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ai-context-compressor",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "AI Context Compressor Team <hello@example.com>",
    "keywords": "ai, nlp, text-compression, rag, tokens, api-optimization, semantic-compression, llm",
    "author": null,
    "author_email": "AI Context Compressor Team <hello@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/70/38/05ab3f9bddabf708e12ad904df9d97643ecc74ec2bebce70023e675c28e6/ai_context_compressor-0.1.0.tar.gz",
    "platform": null,
    "description": "# Context Compressor\n\n[![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://python.org)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Code Style: Black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\n**AI-powered text compression for RAG systems and API calls to reduce token usage and costs while preserving semantic meaning.**\n\n## \ud83d\ude80 Features\n\n- **Intelligent Compression**: Multiple compression strategies including extractive, abstractive, semantic, and hybrid approaches\n- **Quality Evaluation**: Comprehensive quality metrics including ROUGE scores, semantic similarity, and entity preservation\n- **Query-Aware**: Context-aware compression that prioritizes relevant content based on user queries\n- **Batch Processing**: Efficient parallel processing of multiple texts\n- **Caching System**: In-memory caching with TTL for improved performance\n- **Framework Integrations**: Easy integration with LangChain, LlamaIndex, and OpenAI\n- **REST API**: FastAPI-based microservice for easy deployment\n- **Extensible**: Plugin system for custom compression strategies\n\n## \ud83d\udce6 Installation\n\n### Basic Installation\n\n```bash\npip install context-compressor\n```\n\n### With ML Dependencies (for advanced strategies)\n\n```bash\npip install \"context-compressor[ml]\"\n```\n\n### With API Dependencies (for REST API)\n\n```bash\npip install \"context-compressor[api]\"\n```\n\n### Full Installation (all features)\n\n```bash\npip install \"context-compressor[full]\"\n```\n\n### Development Installation\n\n```bash\ngit clone https://github.com/context-compressor/context-compressor.git\ncd context-compressor\npip install -e \".[dev]\"\n```\n\n## \ud83c\udfc1 Quick Start\n\n### Basic Usage\n\n```python\nfrom context_compressor import ContextCompressor\n\n# Initialize the compressor\ncompressor = ContextCompressor()\n\n# Compress text\ntext = \"\"\"\nArtificial Intelligence (AI) is a broad field of computer science focused on \ncreating systems that can perform tasks that typically require human intelligence. \nThese tasks include learning, reasoning, problem-solving, perception, and language \nunderstanding. AI has applications in various domains including healthcare, finance, \ntransportation, and entertainment. Machine learning, a subset of AI, enables \ncomputers to learn and improve from experience without being explicitly programmed.\n\"\"\"\n\nresult = compressor.compress(text, target_ratio=0.5)\n\nprint(\"Original text:\")\nprint(text)\nprint(f\"\\nCompressed text ({result.actual_ratio:.1%} of original):\")\nprint(result.compressed_text)\nprint(f\"\\nTokens saved: {result.tokens_saved}\")\nprint(f\"Quality score: {result.quality_metrics.overall_score:.2f}\")\n```\n\n### Query-Aware Compression\n\n```python\n# Compress with focus on specific topic\nquery = \"machine learning applications\"\n\nresult = compressor.compress(\n    text=text,\n    target_ratio=0.3,\n    query=query\n)\n\nprint(f\"Query-focused compression: {result.compressed_text}\")\n```\n\n### Batch Processing\n\n```python\ntexts = [\n    \"First document about AI and machine learning...\",\n    \"Second document about natural language processing...\",\n    \"Third document about computer vision...\"\n]\n\nbatch_result = compressor.compress_batch(\n    texts=texts,\n    target_ratio=0.4,\n    parallel=True\n)\n\nprint(f\"Processed {len(batch_result.results)} texts\")\nprint(f\"Average compression ratio: {batch_result.average_compression_ratio:.1%}\")\nprint(f\"Total tokens saved: {batch_result.total_tokens_saved}\")\n```\n\n## \ud83d\udd27 Configuration\n\n### Strategy Selection\n\n```python\nfrom context_compressor import ContextCompressor\nfrom context_compressor.strategies import ExtractiveStrategy\n\n# Use specific strategy\nextractive_strategy = ExtractiveStrategy(\n    scoring_method=\"tfidf\",\n    min_sentence_length=20,\n    position_bias=0.2\n)\n\ncompressor = ContextCompressor(strategies=[extractive_strategy])\n\n# Or let the system auto-select\ncompressor = ContextCompressor(default_strategy=\"auto\")\n```\n\n### Quality Evaluation Settings\n\n```python\ncompressor = ContextCompressor(\n    enable_quality_evaluation=True,\n    enable_caching=True,\n    cache_ttl=3600  # 1 hour\n)\n\nresult = compressor.compress(text, target_ratio=0.5)\n\n# Access detailed quality metrics\nprint(f\"ROUGE-1: {result.quality_metrics.rouge_1:.3f}\")\nprint(f\"ROUGE-2: {result.quality_metrics.rouge_2:.3f}\")\nprint(f\"ROUGE-L: {result.quality_metrics.rouge_l:.3f}\")\nprint(f\"Semantic similarity: {result.quality_metrics.semantic_similarity:.3f}\")\nprint(f\"Entity preservation: {result.quality_metrics.entity_preservation_rate:.3f}\")\n```\n\n## \ud83c\udfaf Compression Strategies\n\n### 1. Extractive Strategy (Default)\n\nSelects important sentences based on TF-IDF, position, and query relevance:\n\n```python\nfrom context_compressor.strategies import ExtractiveStrategy\n\nstrategy = ExtractiveStrategy(\n    scoring_method=\"combined\",  # \"tfidf\", \"frequency\", \"position\", \"combined\"\n    min_sentence_length=10,\n    position_bias=0.2,\n    query_weight=0.3\n)\n```\n\n### 2. Abstractive Strategy (Requires ML dependencies)\n\nUses transformer models for summarization:\n\n```python\nfrom context_compressor.strategies import AbstractiveStrategy\n\nstrategy = AbstractiveStrategy(\n    model_name=\"facebook/bart-large-cnn\",\n    max_length=150,\n    min_length=50\n)\n```\n\n### 3. Semantic Strategy (Requires ML dependencies)\n\nGroups similar content using embeddings:\n\n```python\nfrom context_compressor.strategies import SemanticStrategy\n\nstrategy = SemanticStrategy(\n    embedding_model=\"all-MiniLM-L6-v2\",\n    clustering_method=\"kmeans\",\n    n_clusters=\"auto\"\n)\n```\n\n### 4. Hybrid Strategy\n\nCombines multiple strategies for optimal results:\n\n```python\nfrom context_compressor.strategies import HybridStrategy\n\nstrategy = HybridStrategy(\n    primary_strategy=\"extractive\",\n    secondary_strategy=\"semantic\",\n    combination_method=\"weighted\"\n)\n```\n\n## \ud83d\udd0c Integrations\n\n### LangChain Integration\n\n```python\nfrom context_compressor.integrations.langchain import ContextCompressorTransformer\n\n# Use as a document transformer\ntransformer = ContextCompressorTransformer(\n    compressor=compressor,\n    target_ratio=0.6\n)\n\n# Apply to document chain\ncompressed_docs = transformer.transform_documents(documents)\n```\n\n### OpenAI Integration\n\n```python\nfrom context_compressor.integrations.openai import compress_for_openai\n\n# Compress text before sending to OpenAI API\ncompressed_prompt = compress_for_openai(\n    text=long_context,\n    target_ratio=0.4,\n    model=\"gpt-4\"  # Automatically uses appropriate tokenizer\n)\n```\n\n## \ud83c\udf10 REST API\n\nStart the API server:\n\n```bash\nuvicorn context_compressor.api.main:app --reload\n```\n\n### API Endpoints\n\n#### Compress Text\n\n```bash\ncurl -X POST \"http://localhost:8000/compress\" \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"text\": \"Your long text here...\",\n    \"target_ratio\": 0.5,\n    \"strategy\": \"extractive\",\n    \"query\": \"optional query\"\n  }'\n```\n\n#### Batch Compression\n\n```bash\ncurl -X POST \"http://localhost:8000/compress/batch\" \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"texts\": [\"Text 1...\", \"Text 2...\", \"Text 3...\"],\n    \"target_ratio\": 0.4,\n    \"parallel\": true\n  }'\n```\n\n#### List Available Strategies\n\n```bash\ncurl \"http://localhost:8000/strategies\"\n```\n\n### API Documentation\n\nVisit `http://localhost:8000/docs` for interactive API documentation.\n\n## \ud83d\udcca Quality Metrics\n\nThe system provides comprehensive quality evaluation:\n\n- **Semantic Similarity**: Measures content preservation using word embeddings\n- **ROUGE Scores**: Standard summarization metrics (ROUGE-1, ROUGE-2, ROUGE-L)\n- **Entity Preservation**: Tracks retention of named entities, numbers, dates\n- **Readability**: Flesch Reading Ease score for text readability\n- **Overall Score**: Weighted combination of all metrics\n\n## \ud83c\udf9b\ufe0f Advanced Configuration\n\n### Custom Strategy Development\n\n```python\nfrom context_compressor.strategies.base import CompressionStrategy\nfrom context_compressor.core.models import StrategyMetadata\n\nclass CustomStrategy(CompressionStrategy):\n    def _create_metadata(self) -> StrategyMetadata:\n        return StrategyMetadata(\n            name=\"custom\",\n            description=\"Custom compression strategy\",\n            version=\"1.0.0\",\n            author=\"Your Name\"\n        )\n    \n    def _compress_text(self, text: str, target_ratio: float, **kwargs) -> str:\n        # Implement your compression logic\n        return compressed_text\n\n# Register and use\ncompressor.register_strategy(CustomStrategy())\n```\n\n### Cache Configuration\n\n```python\nfrom context_compressor.utils.cache import CacheManager\n\n# Custom cache manager\ncache_manager = CacheManager(\n    ttl=7200,  # 2 hours\n    max_size=2000,\n    cleanup_interval=600  # 10 minutes\n)\n\ncompressor = ContextCompressor(cache_manager=cache_manager)\n```\n\n## \ud83d\udcc8 Performance Optimization\n\n### Batch Processing Tips\n\n```python\n# For large batches, adjust worker count\nbatch_result = compressor.compress_batch(\n    texts=large_text_list,\n    target_ratio=0.5,\n    parallel=True,\n    max_workers=8  # Adjust based on your system\n)\n```\n\n### Memory Management\n\n```python\n# For memory-constrained environments\ncompressor = ContextCompressor(\n    enable_caching=False,  # Disable caching\n    enable_quality_evaluation=False  # Skip quality evaluation\n)\n```\n\n## \ud83e\uddea Testing\n\nRun the test suite:\n\n```bash\n# Run all tests\npytest\n\n# Run with coverage\npytest --cov=context_compressor\n\n# Run only unit tests\npytest -m \"not integration\"\n\n# Run specific test file\npytest tests/test_compressor.py\n```\n\n## \ud83d\udcda Examples\n\nCheck out the `examples/` directory for comprehensive usage examples:\n\n- `examples/basic_usage.py` - Basic compression examples\n- `examples/batch_processing.py` - Batch processing examples\n- `examples/quality_evaluation.py` - Quality metrics examples\n- `examples/custom_strategy.py` - Custom strategy development\n- `examples/integration_examples.py` - Framework integration examples\n- `examples/api_client.py` - REST API client examples\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.\n\n### Development Setup\n\n```bash\ngit clone https://github.com/context-compressor/context-compressor.git\ncd context-compressor\npip install -e \".[dev]\"\npre-commit install\n```\n\n### Running Tests\n\n```bash\npytest\nblack .\nisort .\nflake8 .\nmypy src/\n```\n\n## \ud83d\udcc4 License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## \ud83c\udd98 Support\n\n- **Documentation**: [https://context-compressor.readthedocs.io](https://context-compressor.readthedocs.io)\n- **Issues**: [GitHub Issues](https://github.com/context-compressor/context-compressor/issues)\n- **Discussions**: [GitHub Discussions](https://github.com/context-compressor/context-compressor/discussions)\n\n## \ud83d\uddfa\ufe0f Roadmap\n\n- [ ] Additional compression strategies (neural, attention-based)\n- [ ] Multi-language support\n- [ ] Integration with more LLM providers\n- [ ] GUI interface\n- [ ] Cloud deployment templates\n- [ ] Performance benchmarking suite\n\n## \ud83d\udcd6 Citation\n\nIf you use Context Compressor in your research, please cite:\n\n```bibtex\n@software{context_compressor,\n  title={Context Compressor: AI-Powered Text Compression for RAG Systems},\n  author={Context Compressor Team},\n  url={https://github.com/context-compressor/context-compressor},\n  year={2024}\n}\n```\n\n---\n\n**Made with \u2764\ufe0f for the AI community**\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "AI-powered text compression for RAG systems and API calls to reduce token usage and costs",
    "version": "0.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/yourusername/ai-context-compressor/issues",
        "Changelog": "https://github.com/yourusername/ai-context-compressor/blob/main/CHANGELOG.md",
        "Documentation": "https://github.com/yourusername/ai-context-compressor#readme",
        "Homepage": "https://github.com/yourusername/ai-context-compressor",
        "Repository": "https://github.com/yourusername/ai-context-compressor.git"
    },
    "split_keywords": [
        "ai",
        " nlp",
        " text-compression",
        " rag",
        " tokens",
        " api-optimization",
        " semantic-compression",
        " llm"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "90da91ed5dee60c6d1a87b297baf74db4ec6830e1ea040c1b89136a2e93d875f",
                "md5": "242c5cb0ac27dfc6c2f6dda53cf6cc4b",
                "sha256": "4663414d521febda23e21e8b71fb5bd9fb5d451a29a3ca5fea37bf10c305e25b"
            },
            "downloads": -1,
            "filename": "ai_context_compressor-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "242c5cb0ac27dfc6c2f6dda53cf6cc4b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 38034,
            "upload_time": "2025-08-14T19:53:35",
            "upload_time_iso_8601": "2025-08-14T19:53:35.325304Z",
            "url": "https://files.pythonhosted.org/packages/90/da/91ed5dee60c6d1a87b297baf74db4ec6830e1ea040c1b89136a2e93d875f/ai_context_compressor-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "703805ab3f9bddabf708e12ad904df9d97643ecc74ec2bebce70023e675c28e6",
                "md5": "90a8a7f6e5de879e111c1771d23b9c51",
                "sha256": "787ce6741af95c83526de62c30cbcc0a4379167d8ead8fed74adc44d68086697"
            },
            "downloads": -1,
            "filename": "ai_context_compressor-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "90a8a7f6e5de879e111c1771d23b9c51",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 46095,
            "upload_time": "2025-08-14T19:53:37",
            "upload_time_iso_8601": "2025-08-14T19:53:37.218379Z",
            "url": "https://files.pythonhosted.org/packages/70/38/05ab3f9bddabf708e12ad904df9d97643ecc74ec2bebce70023e675c28e6/ai_context_compressor-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-14 19:53:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yourusername",
    "github_project": "ai-context-compressor",
    "github_not_found": true,
    "lcname": "ai-context-compressor"
}
        
Elapsed time: 1.30537s