[![Publish new version to NPM](https://github.com/dev-jpnobrega/ai-agent/actions/workflows/npm-publish.yml/badge.svg)](https://github.com/dev-jpnobrega/ai-agent/actions/workflows/npm-publish.yml)
# AI Agent
AI Agent simplifies the implementation and use of generative AI with LangChain, was inspired by the project [autogen](https://github.com/microsoft/autogen)
## Installation
Use the package manager [pip](https://pypi.org/project/pip/) to install AI Agent.
```bash
pip install ai_enterprise_agent
```
## Usage
### Simple use
```python
import asyncio
from ai_enterprise_agent.agent import Agent
from ai_enterprise_agent.interface.settings import (CHAIN_TYPE, DATABASE_TYPE, DIALECT_TYPE,
LLM_TYPE, PROCESSING_TYPE, VECTOR_STORE_TYPE)
agent = Agent({
'processing_type': PROCESSING_TYPE.single,
'chains': [CHAIN_TYPE.simple_chain],
'model': {
"type": LLM_TYPE.azure,
"api_key": <api_key>,
"model": <model>,
"endpoint": <endpoint>,
"api_version": <api_version>,
"temperature": 0.0
},
"system": {
"system_message": ""
},
})
response = asyncio.run(
agent._call(
input={
"question": "Who's Leonardo Da Vinci?.",
"chat_thread_id": "<chat_thread_id>"
}
)
)
print(response)
```
### Using with Orchestrator Mode
When using LLM with Orchestrator Mode the Agent finds the best way to answer the question in your base knowledge.
```python
agent = Agent({
'processing_type': PROCESSING_TYPE.orchestrator,
'chains': [CHAIN_TYPE.simple_chain, CHAIN_TYPE.sql_chain],
'model': {
"type": LLM_TYPE.azure,
"api_key": <api_key>,
"model": <model>,
"endpoint": <endpoint>,
"api_version": <api_version>,
"temperature": 0.0
},
"database": {
"type": DIALECT_TYPE.postgres,
"host": <host>,
"port": <port>,
"username": <username>,
"password": <password>,
"database": <database>,
"includes_tables": ['table-1', 'table-2'],
},
"system": {
"system_message": ""
},
})
response = asyncio.run(
agent._call(
input={
"question": "How many employees there?",
"chat_thread_id": "<chat_thread_id>"
}
)
)
print(response)
```
## Contributing
If you've ever wanted to contribute to open source, and a great cause, now is your chance!
See the [contributing docs](CONTRIBUTING.md) for more information
## Contributors β¨
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
<tr>
<td align="center">
<a href="https://github.com/dev-jpnobrega">
<img src="https://avatars1.githubusercontent.com/u/28389807?s=400&u=2c152fc946efc96badce0cfc743ebcb2585b4b3f&v=4" width="100px;" alt=""/>
<br />
<sub>
<b>JP. Nobrega</b>
</sub>
</a>
<br />
<a href="https://github.com/dev-jpnobrega/ai-agent-py/issues" title="Answering Questions">π¬</a>
<a href="https://github.com/dev-jpnobrega/ai-agent-py/master#how-do-i-use" title="Documentation">π</a>
<a href="https://github.com/dev-jpnobrega/ai-agent-py/pulls" title="Reviewed Pull Requests">π</a>
<a href="#talk-kentcdodds" title="Talks">π’</a>
</td>
<td align="center">
<a href="https://github.com/tuliogaio">
<img src="https://github.com/tuliogaio.png" width="100px;" alt=""/>
<br />
<sub>
<b>TΓΊlio CΓ©sar Gaio</b>
</sub>
</a>
<br />
<a href="https://github.com/dev-jpnobrega/ai-agent-py/issues" title="Answering Questions">π¬</a>
<a href="https://github.com/dev-jpnobrega/ai-agent-py/master#how-do-i-use" title="Documentation">π</a>
<a href="https://github.com/dev-jpnobrega/ai-agent-py/pulls" title="Reviewed Pull Requests">π</a>
<a href="#talk-kentcdodds" title="Talks">π’</a>
</td>
</tr>
</table>
<!-- markdownlint-enable -->
<!-- prettier-ignore-end -->
<!-- ALL-CONTRIBUTORS-LIST:END -->
## License
[Apache-2.0](LICENSE)
Raw data
{
"_id": null,
"home_page": null,
"name": "ai-enterprise-agent",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "ai ai-agent agent assistant enterprise",
"author": "Author",
"author_email": "autor@autor.com.br",
"download_url": "https://files.pythonhosted.org/packages/29/45/9162b9aebf72492c8385e27279967ff9071a03f7e90291dc3a43b4698b94/ai_enterprise_agent-0.0.9.tar.gz",
"platform": null,
"description": "\n[![Publish new version to NPM](https://github.com/dev-jpnobrega/ai-agent/actions/workflows/npm-publish.yml/badge.svg)](https://github.com/dev-jpnobrega/ai-agent/actions/workflows/npm-publish.yml)\n\n# AI Agent\n\nAI Agent simplifies the implementation and use of generative AI with LangChain, was inspired by the project [autogen](https://github.com/microsoft/autogen)\n\n\n\n## Installation\n\nUse the package manager [pip](https://pypi.org/project/pip/) to install AI Agent.\n\n```bash\npip install ai_enterprise_agent\n```\n\n## Usage\n\n### Simple use\n```python\n import asyncio\n\n from ai_enterprise_agent.agent import Agent\n from ai_enterprise_agent.interface.settings import (CHAIN_TYPE, DATABASE_TYPE, DIALECT_TYPE,\n LLM_TYPE, PROCESSING_TYPE, VECTOR_STORE_TYPE)\n agent = Agent({\n 'processing_type': PROCESSING_TYPE.single,\n 'chains': [CHAIN_TYPE.simple_chain],\n 'model': {\n \"type\": LLM_TYPE.azure,\n \"api_key\": <api_key>,\n \"model\": <model>,\n \"endpoint\": <endpoint>,\n \"api_version\": <api_version>,\n \"temperature\": 0.0\n },\n \"system\": {\n \"system_message\": \"\"\n },\n })\n\n response = asyncio.run(\n agent._call(\n input={\n \"question\": \"Who's Leonardo Da Vinci?.\",\n \"chat_thread_id\": \"<chat_thread_id>\"\n }\n )\n )\n print(response)\n```\n\n### Using with Orchestrator Mode\nWhen using LLM with Orchestrator Mode the Agent finds the best way to answer the question in your base knowledge.\n```python\n\n agent = Agent({\n 'processing_type': PROCESSING_TYPE.orchestrator,\n 'chains': [CHAIN_TYPE.simple_chain, CHAIN_TYPE.sql_chain],\n 'model': {\n \"type\": LLM_TYPE.azure,\n \"api_key\": <api_key>,\n \"model\": <model>,\n \"endpoint\": <endpoint>,\n \"api_version\": <api_version>,\n \"temperature\": 0.0\n },\n \"database\": {\n \"type\": DIALECT_TYPE.postgres,\n \"host\": <host>,\n \"port\": <port>,\n \"username\": <username>,\n \"password\": <password>,\n \"database\": <database>,\n \"includes_tables\": ['table-1', 'table-2'],\n },\n \"system\": {\n \"system_message\": \"\"\n },\n })\n\n response = asyncio.run(\n agent._call(\n input={\n \"question\": \"How many employees there?\",\n \"chat_thread_id\": \"<chat_thread_id>\"\n }\n )\n )\n print(response)\n```\n\n## Contributing\n\nIf you've ever wanted to contribute to open source, and a great cause, now is your chance!\n\nSee the [contributing docs](CONTRIBUTING.md) for more information\n\n## Contributors \u2728\n\n<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->\n<!-- prettier-ignore-start -->\n<!-- markdownlint-disable -->\n\n<table>\n <tr>\n <td align=\"center\">\n <a href=\"https://github.com/dev-jpnobrega\">\n <img src=\"https://avatars1.githubusercontent.com/u/28389807?s=400&u=2c152fc946efc96badce0cfc743ebcb2585b4b3f&v=4\" width=\"100px;\" alt=\"\"/>\n <br />\n <sub>\n <b>JP. Nobrega</b>\n </sub>\n </a>\n <br />\n <a href=\"https://github.com/dev-jpnobrega/ai-agent-py/issues\" title=\"Answering Questions\">\ud83d\udcac</a>\n <a href=\"https://github.com/dev-jpnobrega/ai-agent-py/master#how-do-i-use\" title=\"Documentation\">\ud83d\udcd6</a>\n <a href=\"https://github.com/dev-jpnobrega/ai-agent-py/pulls\" title=\"Reviewed Pull Requests\">\ud83d\udc40</a>\n <a href=\"#talk-kentcdodds\" title=\"Talks\">\ud83d\udce2</a>\n </td>\n <td align=\"center\">\n <a href=\"https://github.com/tuliogaio\">\n <img src=\"https://github.com/tuliogaio.png\" width=\"100px;\" alt=\"\"/>\n <br />\n <sub>\n <b>T\u00falio C\u00e9sar Gaio</b>\n </sub>\n </a>\n <br />\n <a href=\"https://github.com/dev-jpnobrega/ai-agent-py/issues\" title=\"Answering Questions\">\ud83d\udcac</a>\n <a href=\"https://github.com/dev-jpnobrega/ai-agent-py/master#how-do-i-use\" title=\"Documentation\">\ud83d\udcd6</a>\n <a href=\"https://github.com/dev-jpnobrega/ai-agent-py/pulls\" title=\"Reviewed Pull Requests\">\ud83d\udc40</a>\n <a href=\"#talk-kentcdodds\" title=\"Talks\">\ud83d\udce2</a>\n </td>\n </tr>\n</table>\n\n<!-- markdownlint-enable -->\n<!-- prettier-ignore-end -->\n<!-- ALL-CONTRIBUTORS-LIST:END -->\n\n## License\n[Apache-2.0](LICENSE)\n",
"bugtrack_url": null,
"license": "Apache 2.0 License",
"summary": "AI Agent simplifies the implementation and use of generative AI with LangChain.",
"version": "0.0.9",
"project_urls": null,
"split_keywords": [
"ai",
"ai-agent",
"agent",
"assistant",
"enterprise"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b9928321cbc00090a338d174f5e95747f7c802879eed5380e3e85c66ebfbd52a",
"md5": "bcad18eb5d245ef02e0d8ff488ff6071",
"sha256": "b773c399979016ca251a765e1021efc0d5ccbf4675ce149594d48337fb32d8f8"
},
"downloads": -1,
"filename": "ai_enterprise_agent-0.0.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "bcad18eb5d245ef02e0d8ff488ff6071",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 36364,
"upload_time": "2024-04-30T17:36:58",
"upload_time_iso_8601": "2024-04-30T17:36:58.840643Z",
"url": "https://files.pythonhosted.org/packages/b9/92/8321cbc00090a338d174f5e95747f7c802879eed5380e3e85c66ebfbd52a/ai_enterprise_agent-0.0.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "29459162b9aebf72492c8385e27279967ff9071a03f7e90291dc3a43b4698b94",
"md5": "b34808d9f26beceddaee5f974f04933d",
"sha256": "0d7a38b337d89f30eadf5da48d292e399539c9b13d191e6e1d3216cdd5102c05"
},
"downloads": -1,
"filename": "ai_enterprise_agent-0.0.9.tar.gz",
"has_sig": false,
"md5_digest": "b34808d9f26beceddaee5f974f04933d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 23758,
"upload_time": "2024-04-30T17:37:01",
"upload_time_iso_8601": "2024-04-30T17:37:01.307781Z",
"url": "https://files.pythonhosted.org/packages/29/45/9162b9aebf72492c8385e27279967ff9071a03f7e90291dc3a43b4698b94/ai_enterprise_agent-0.0.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-30 17:37:01",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "ai-enterprise-agent"
}