# ai-infra
Infrastructure for efficient and scalable AI applications: clean LLM interfaces, composable graphs, and MCP client/server utilities. Batteries-included quickstarts help you ship fast.
- LLM: simple chat, agents with tools, streaming, retries, structured output, HITL hooks
- Graph: small-to-large workflows using LangGraph with typed state and tracing
- MCP: multi-server client, tool discovery, OpenMCP (OpenAPI-like) doc generation
## Install
- Python: 3.11 – 3.13
- Package manager: Poetry (recommended) or pip
Using Poetry (dev):
```bash
poetry install
poetry shell
```
Using pip (library use):
```bash
pip install ai-infra
```
## Configure providers (env)
Create a .env (or export in your shell) with any providers you plan to use.
```bash
# OpenAI
export OPENAI_API_KEY=...
# Anthropic
export ANTHROPIC_API_KEY=...
# Google Generative AI
export GOOGLE_API_KEY=...
# xAI
export XAI_API_KEY=...
```
Optional: MCP HTTP headers for servers you call through the client.
```bash
export MCP_AUTH_TOKEN=...
```
## Quickstarts
Below are tiny copy/paste snippets and how to run included examples.
### LLM: chat (sync)
```python
from ai_infra.llm import CoreLLM, Providers, Models
llm = CoreLLM()
resp = llm.chat(
user_msg="One fun fact about the moon?",
system="You are concise.",
provider=Providers.openai,
model_name=Models.openai.gpt_4o.value,
)
print(resp)
```
Run the included example (calls a main() function):
```bash
python -c "from ai_infra.llm.examples.02_llm_chat_basic import main; main()"
```
### LLM: agent (tools, sync)
```python
from ai_infra.llm import CoreAgent, Providers, Models
agent = CoreAgent()
resp = agent.run_agent(
messages=[{"role": "user", "content": "Introduce yourself in one sentence."}],
provider=Providers.openai,
model_name=Models.openai.gpt_4o.value,
model_kwargs={"temperature": 0.7},
)
print(getattr(resp, "content", resp))
```
Run the included example:
```bash
python -c "from ai_infra.llm.examples.01_agent_basic import main; main()"
```
### LLM: token streaming (async)
```python
import asyncio
from ai_infra.llm import CoreLLM, Providers, Models
async def demo():
llm = CoreLLM()
async for token, meta in llm.stream_tokens(
"Stream one short paragraph about Mars.",
provider=Providers.openai,
model_name=Models.openai.gpt_4o.value,
):
print(token, end="", flush=True)
asyncio.run(demo())
```
See more examples in src/ai_infra/llm/examples:
- 03_structured_output.py, 04_agent_stream.py, 05_tool_controls.py, 06_hitl.py, 07_retry.py, 08_agent_stream_tokens.py, 09_chat_stream.py
### Graph: minimal state machine
```python
from typing_extensions import TypedDict
from langgraph.graph import END
from ai_infra.graph.core import CoreGraph
from ai_infra.graph.models import Edge, ConditionalEdge
class MyState(TypedDict):
value: int
def inc(s: MyState) -> MyState:
s["value"] += 1
return s
def mul(s: MyState) -> MyState:
s["value"] *= 2
return s
graph = CoreGraph(
state_type=MyState,
node_definitions=[inc, mul],
edges=[
Edge(start="inc", end="mul"),
ConditionalEdge(
start="mul", router_fn=lambda s: "inc" if s["value"] < 40 else END, targets=["inc", END]
),
],
)
print(graph.run({"value": 1}))
```
Run the included example:
```bash
python -c "from ai_infra.graph.examples.01_graph_basic import main; main()"
```
See also: 02_graph_stream_values.py
### MCP: multi-server client
```python
import asyncio
from ai_infra.mcp.client.core import CoreMCPClient
async def main():
client = CoreMCPClient([
{"transport": "streamable_http", "url": "http://127.0.0.1:8000/api/mcp", "headers": {"Authorization": "Bearer $MCP_AUTH_TOKEN"}},
# {"transport": "stdio", "command": "./your-mcp-server", "args": []},
# {"transport": "sse", "url": "http://127.0.0.1:8001/sse"},
])
await client.discover()
tools = await client.list_tools()
print("Discovered tools:", tools)
docs = await client.get_openmcp() # or client.get_openmcp("your_server_name")
print("OpenMCP doc keys:", list(docs.keys()))
asyncio.run(main())
```
Run the included example:
```bash
python -m ai_infra.mcp.examples.01_mcps
```
## Running all quickstarts
If you prefer a single runner command, add a tiny script like this locally:
```python
# quickstart.py
import sys
M = {
"llm_agent_basic": "ai_infra.llm.examples.01_agent_basic:main",
"llm_chat_basic": "ai_infra.llm.examples.02_llm_chat_basic:main",
"graph_basic": "ai_infra.graph.examples.01_graph_basic:main",
"mcp_discover": "ai_infra.mcp.examples.01_mcps:__main__",
}
if __name__ == "__main__":
key = sys.argv[1]
mod, _, func = M[key].partition(":")
if func == "__main__":
import runpy; runpy.run_module(mod, run_name="__main__")
else:
mod = __import__(mod, fromlist=[func])
getattr(mod, func)()
```
Run:
```bash
python quickstart.py llm_chat_basic
python quickstart.py graph_basic
python quickstart.py llm_agent_basic
python quickstart.py mcp_discover
```
## Testing and quality
- Unit tests: pytest
- `pytest -q`
- Lint: ruff
- `ruff check src tests`
- Types: mypy
- `mypy src`
Tip: add a test_examples.py that imports and runs the example main() functions to smoke test provider wiring without hitting network (use mocks).
## Project layout
- src/ai_infra/llm: core LLM and Agent APIs, providers, tools, and utils
- src/ai_infra/graph: CoreGraph wrapper, typed models, and utilities
- src/ai_infra/mcp: MCP client, examples, and server stubs
- tests: add your unit/integration tests here
## Notes and roadmap
- Providers: OpenAI, Anthropic, Google GenAI, xAI (via langchain providers)
- Features include structured output, retries, fallbacks, streaming, and tool call controls
- MCP doc generation (OpenMCP) is available via CoreMCPClient.get_openmcp()
- Nice-to-haves: add a simple example runner module; more test coverage around examples and MCP flows
## License
MIT
Raw data
{
"_id": null,
"home_page": null,
"name": "ai-infra",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.11",
"maintainer_email": null,
"keywords": "ai, langchain, langgraph, fastapi, infra, llm, mcp",
"author": "Ali Khatami",
"author_email": "aliikhatami94@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/82/23/2768ea82860bde2a3bb9acf3c0821f5deccff25b2c1702500f8ea60c151e/ai_infra-0.1.27.tar.gz",
"platform": null,
"description": "# ai-infra\n\nInfrastructure for efficient and scalable AI applications: clean LLM interfaces, composable graphs, and MCP client/server utilities. Batteries-included quickstarts help you ship fast.\n\n- LLM: simple chat, agents with tools, streaming, retries, structured output, HITL hooks\n- Graph: small-to-large workflows using LangGraph with typed state and tracing\n- MCP: multi-server client, tool discovery, OpenMCP (OpenAPI-like) doc generation\n\n\n## Install\n\n- Python: 3.11 \u2013 3.13\n- Package manager: Poetry (recommended) or pip\n\nUsing Poetry (dev):\n\n```bash\npoetry install\npoetry shell\n```\n\nUsing pip (library use):\n\n```bash\npip install ai-infra\n```\n\n\n## Configure providers (env)\n\nCreate a .env (or export in your shell) with any providers you plan to use.\n\n```bash\n# OpenAI\nexport OPENAI_API_KEY=...\n# Anthropic\nexport ANTHROPIC_API_KEY=...\n# Google Generative AI\nexport GOOGLE_API_KEY=...\n# xAI\nexport XAI_API_KEY=...\n```\n\nOptional: MCP HTTP headers for servers you call through the client.\n\n```bash\nexport MCP_AUTH_TOKEN=...\n```\n\n\n## Quickstarts\n\nBelow are tiny copy/paste snippets and how to run included examples.\n\n### LLM: chat (sync)\n\n```python\nfrom ai_infra.llm import CoreLLM, Providers, Models\n\nllm = CoreLLM()\nresp = llm.chat(\n user_msg=\"One fun fact about the moon?\",\n system=\"You are concise.\",\n provider=Providers.openai,\n model_name=Models.openai.gpt_4o.value,\n)\nprint(resp)\n```\n\nRun the included example (calls a main() function):\n\n```bash\npython -c \"from ai_infra.llm.examples.02_llm_chat_basic import main; main()\"\n```\n\n### LLM: agent (tools, sync)\n\n```python\nfrom ai_infra.llm import CoreAgent, Providers, Models\n\nagent = CoreAgent()\nresp = agent.run_agent(\n messages=[{\"role\": \"user\", \"content\": \"Introduce yourself in one sentence.\"}],\n provider=Providers.openai,\n model_name=Models.openai.gpt_4o.value,\n model_kwargs={\"temperature\": 0.7},\n)\nprint(getattr(resp, \"content\", resp))\n```\n\nRun the included example:\n\n```bash\npython -c \"from ai_infra.llm.examples.01_agent_basic import main; main()\"\n```\n\n### LLM: token streaming (async)\n\n```python\nimport asyncio\nfrom ai_infra.llm import CoreLLM, Providers, Models\n\nasync def demo():\n llm = CoreLLM()\n async for token, meta in llm.stream_tokens(\n \"Stream one short paragraph about Mars.\",\n provider=Providers.openai,\n model_name=Models.openai.gpt_4o.value,\n ):\n print(token, end=\"\", flush=True)\n\nasyncio.run(demo())\n```\n\nSee more examples in src/ai_infra/llm/examples:\n- 03_structured_output.py, 04_agent_stream.py, 05_tool_controls.py, 06_hitl.py, 07_retry.py, 08_agent_stream_tokens.py, 09_chat_stream.py\n\n\n### Graph: minimal state machine\n\n```python\nfrom typing_extensions import TypedDict\nfrom langgraph.graph import END\nfrom ai_infra.graph.core import CoreGraph\nfrom ai_infra.graph.models import Edge, ConditionalEdge\n\nclass MyState(TypedDict):\n value: int\n\ndef inc(s: MyState) -> MyState:\n s[\"value\"] += 1\n return s\n\ndef mul(s: MyState) -> MyState:\n s[\"value\"] *= 2\n return s\n\ngraph = CoreGraph(\n state_type=MyState,\n node_definitions=[inc, mul],\n edges=[\n Edge(start=\"inc\", end=\"mul\"),\n ConditionalEdge(\n start=\"mul\", router_fn=lambda s: \"inc\" if s[\"value\"] < 40 else END, targets=[\"inc\", END]\n ),\n ],\n)\n\nprint(graph.run({\"value\": 1}))\n```\n\nRun the included example:\n\n```bash\npython -c \"from ai_infra.graph.examples.01_graph_basic import main; main()\"\n```\n\nSee also: 02_graph_stream_values.py\n\n\n### MCP: multi-server client\n\n```python\nimport asyncio\nfrom ai_infra.mcp.client.core import CoreMCPClient\n\nasync def main():\n client = CoreMCPClient([\n {\"transport\": \"streamable_http\", \"url\": \"http://127.0.0.1:8000/api/mcp\", \"headers\": {\"Authorization\": \"Bearer $MCP_AUTH_TOKEN\"}},\n # {\"transport\": \"stdio\", \"command\": \"./your-mcp-server\", \"args\": []},\n # {\"transport\": \"sse\", \"url\": \"http://127.0.0.1:8001/sse\"},\n ])\n\n await client.discover()\n tools = await client.list_tools()\n print(\"Discovered tools:\", tools)\n\n docs = await client.get_openmcp() # or client.get_openmcp(\"your_server_name\")\n print(\"OpenMCP doc keys:\", list(docs.keys()))\n\nasyncio.run(main())\n```\n\nRun the included example:\n\n```bash\npython -m ai_infra.mcp.examples.01_mcps\n```\n\n\n## Running all quickstarts\n\nIf you prefer a single runner command, add a tiny script like this locally:\n\n```python\n# quickstart.py\nimport sys\n\nM = {\n \"llm_agent_basic\": \"ai_infra.llm.examples.01_agent_basic:main\",\n \"llm_chat_basic\": \"ai_infra.llm.examples.02_llm_chat_basic:main\",\n \"graph_basic\": \"ai_infra.graph.examples.01_graph_basic:main\",\n \"mcp_discover\": \"ai_infra.mcp.examples.01_mcps:__main__\",\n}\n\nif __name__ == \"__main__\":\n key = sys.argv[1]\n mod, _, func = M[key].partition(\":\")\n if func == \"__main__\":\n import runpy; runpy.run_module(mod, run_name=\"__main__\")\n else:\n mod = __import__(mod, fromlist=[func])\n getattr(mod, func)()\n```\n\nRun:\n\n```bash\npython quickstart.py llm_chat_basic\npython quickstart.py graph_basic\npython quickstart.py llm_agent_basic\npython quickstart.py mcp_discover\n```\n\n\n## Testing and quality\n\n- Unit tests: pytest\n - `pytest -q`\n- Lint: ruff\n - `ruff check src tests`\n- Types: mypy\n - `mypy src`\n\nTip: add a test_examples.py that imports and runs the example main() functions to smoke test provider wiring without hitting network (use mocks).\n\n\n## Project layout\n\n- src/ai_infra/llm: core LLM and Agent APIs, providers, tools, and utils\n- src/ai_infra/graph: CoreGraph wrapper, typed models, and utilities\n- src/ai_infra/mcp: MCP client, examples, and server stubs\n- tests: add your unit/integration tests here\n\n\n## Notes and roadmap\n\n- Providers: OpenAI, Anthropic, Google GenAI, xAI (via langchain providers)\n- Features include structured output, retries, fallbacks, streaming, and tool call controls\n- MCP doc generation (OpenMCP) is available via CoreMCPClient.get_openmcp()\n- Nice-to-haves: add a simple example runner module; more test coverage around examples and MCP flows\n\n\n## License\n\nMIT\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Infrastructure for efficient and scalable AI applications.",
"version": "0.1.27",
"project_urls": {
"Documentation": "https://github.com/your-org/ai-infra#readme",
"Homepage": "https://github.com/your-org/ai-infra",
"Issues": "https://github.com/your-org/ai-infra/issues",
"Repository": "https://github.com/your-org/ai-infra"
},
"split_keywords": [
"ai",
" langchain",
" langgraph",
" fastapi",
" infra",
" llm",
" mcp"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "ad1343e4eea62692e53f89bbb7520148474e8501468643ac2c2ee6b265d4791f",
"md5": "f28e8b630b6155acca25f63551568c8d",
"sha256": "9537b030b7dee1f1d53ef532b3d56151331545906d4c5dc56ce9f02c7853c8a2"
},
"downloads": -1,
"filename": "ai_infra-0.1.27-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f28e8b630b6155acca25f63551568c8d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.11",
"size": 107589,
"upload_time": "2025-08-28T06:10:14",
"upload_time_iso_8601": "2025-08-28T06:10:14.988441Z",
"url": "https://files.pythonhosted.org/packages/ad/13/43e4eea62692e53f89bbb7520148474e8501468643ac2c2ee6b265d4791f/ai_infra-0.1.27-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "82232768ea82860bde2a3bb9acf3c0821f5deccff25b2c1702500f8ea60c151e",
"md5": "879b7ab36c54a7958f6f53bf5c7c67f0",
"sha256": "059c068dec53fca476d6384a43455d8a8db5cc9c126e03bf59042b07ef9bf1ef"
},
"downloads": -1,
"filename": "ai_infra-0.1.27.tar.gz",
"has_sig": false,
"md5_digest": "879b7ab36c54a7958f6f53bf5c7c67f0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.11",
"size": 81404,
"upload_time": "2025-08-28T06:10:16",
"upload_time_iso_8601": "2025-08-28T06:10:16.055082Z",
"url": "https://files.pythonhosted.org/packages/82/23/2768ea82860bde2a3bb9acf3c0821f5deccff25b2c1702500f8ea60c151e/ai_infra-0.1.27.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-28 06:10:16",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "your-org",
"github_project": "ai-infra#readme",
"github_not_found": true,
"lcname": "ai-infra"
}