ai-management


Nameai-management JSON
Version 1.0.40 PyPI version JSON
download
home_pagehttps://github.com/adeo/aim
SummaryThis is a toolbox to help AI & ML teams to have a better management of their metrics.
upload_time2024-01-17 17:29:47
maintainer
docs_urlNone
authorLeroy Merlin Brazil
requires_python
licenseMIT
keywords management toolbox lmbr ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Artificial Intelligence Management

> This is a toolbox to help AI & ML teams to have a better management of their metrics and processes.

Our desire is to enable the company with data related to AI solution, in a easy way to read and use. Some new goals are going to be included later

[Confluence Documentation Link]()

[Tangram Link](https://tangram.adeo.com/products/1d6f6abb-63ba-4663-bd1e-18007bffde36/overview)

## Table of Contents

- [Project Structure](#project-structure)
- [Features](#features)
- [Installation/Usage](#Installation/Usage)
- [Contact](#Contact)

## Project Structure

Describe the structure of the `project` folder, including the organization of modules, directories, and any important files.

```
ai_management/
├── __init__.py
├── model_evaluation.py
├── config.yaml
```

Explain the purpose of each module or significant files.

## ModelEvaluation

Historize the technical model evaluation results at a Google Big Query table at a Google Cloud Platform project.

## Installation
```python
pip install ai-management
```

## Usage

### Binary classification
```python
y_true = [1, 0, 0, 1, 1]
y_pred = [1, 0, 0, 0, 1]

y_test_a_lst = y_true
y_pred_a_lst = y_pred

y_test_a_arr = np.array(y_true)
y_pred_a_arr = np.array(y_pred)
```

### Multi class classification
```python
y_true = [0, 1, 2, 1, 2]
y_pred = [[0.9, 0.1, 0.0], [0.3, 0.2, 0.5], [0.2, 0.3, 0.5], [0.1, 0.8, 0.1], [0.1, 0.2, 0.7]]

y_test_b_lst = y_true
y_pred_b_lst = y_pred

y_test_b_arr = np.array(y_true)
y_pred_b_arr = np.array(y_pred)
```

### Multi label classification
```python
y_test = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
y_pred = [[0, 1, 2], [3, 4, 5], [6, 7, 9]]

y_test_c_lst = y_test
y_pred_c_lst = y_pred

y_test_c_arr = np.array(y_true)
y_pred_c_arr = np.array(y_pred)
```
### Regression
```python
y_true = [2.5, 3.0, 4.0, 5.5, 6.0]
y_pred = [2.0, 3.5, 3.8, 5.0, 6.5]

y_test_d_lst = y_true
y_pred_d_lst = y_pred

y_test_d_arr = np.array(y_true)
y_pred_d_arr = np.array(y_pred)
```

### Assossiation Rules
```python
import pandas as pd
import numpy as np

# Create a dataframe with random values
df_assossiation = pd.DataFrame({
    'ID_PRNCPAL': np.random.randint(1, 50000, size=103846),
    'CONFIDENCE': np.random.uniform(0.01, 0.03, size=103846)
})

df_assossiation.sort_values('ID_PRNCPAL')
```



### Solution Evaluation
```python
import ai_management as aim 
client_bq = bigquery.Client(project='project')
me = aim.ModelEvaluation(
    client_bq=client_bq,
    destination='project.dataset.table'
)

# Historizing standard metrics
me.historize_model_evaluation(
    soltn_nm = 'Solution X', 
    lst_mdls = [
        {
            'mdl_nm' : 'Model A',
            'algrthm_typ' : 'binary_classification',
            'data' : [y_test_a_lst, y_pred_a_lst]}, 
        {
            'mdl_nm' : 'Model B',
            'algrthm_typ' : 'multi_class_classification',
            'data' : [y_test_b_lst, y_pred_b_lst]},
        {
            'mdl_nm' : 'Model C',
            'algrthm_typ' : 'multi_label_classification',
            'data' : [y_test_c_lst, y_pred_c_lst]},
        {
            'mdl_nm' : 'Model D',
            'algrthm_typ' : 'assossiation',
            'data' : ['confidence', df_assossiation]},
    ]
)

# Historizing custom metrics
me.historize_custom_metric(
    soltn_nm = "Solution Y",
    lst_mdls = [
        {
            'mdl_nm': 'Model E',
            'algrthm_typ': 'regression',
            'data': [
                ["Lin's Concordance Correlation Coefficient", 0.85, None],
                ["Huber's error", 123, {"delta": 0.75}],
            ]
        },
    ]
)
```

## Contact

* Leroy Merlin Brazil AI scientists and developers: chapter_inteligencia_artificia@leroymerlin.com.br




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/adeo/aim",
    "name": "ai-management",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "management,toolbox,lmbr,ai",
    "author": "Leroy Merlin Brazil",
    "author_email": "chapter_inteligencia_artificia@leroymerlin.com.br",
    "download_url": "https://files.pythonhosted.org/packages/bd/03/3a86ba2e45e4567d256559f4e7d6754f99e0955d632dbc8b0c041ad69f28/ai_management-1.0.40.tar.gz",
    "platform": null,
    "description": "# Artificial Intelligence Management\n\n> This is a toolbox to help AI & ML teams to have a better management of their metrics and processes.\n\nOur desire is to enable the company with data related to AI solution, in a easy way to read and use. Some new goals are going to be included later\n\n[Confluence Documentation Link]()\n\n[Tangram Link](https://tangram.adeo.com/products/1d6f6abb-63ba-4663-bd1e-18007bffde36/overview)\n\n## Table of Contents\n\n- [Project Structure](#project-structure)\n- [Features](#features)\n- [Installation/Usage](#Installation/Usage)\n- [Contact](#Contact)\n\n## Project Structure\n\nDescribe the structure of the `project` folder, including the organization of modules, directories, and any important files.\n\n```\nai_management/\n\u251c\u2500\u2500 __init__.py\n\u251c\u2500\u2500 model_evaluation.py\n\u251c\u2500\u2500 config.yaml\n```\n\nExplain the purpose of each module or significant files.\n\n## ModelEvaluation\n\nHistorize the technical model evaluation results at a Google Big Query table at a Google Cloud Platform project.\n\n## Installation\n```python\npip install ai-management\n```\n\n## Usage\n\n### Binary classification\n```python\ny_true = [1, 0, 0, 1, 1]\ny_pred = [1, 0, 0, 0, 1]\n\ny_test_a_lst = y_true\ny_pred_a_lst = y_pred\n\ny_test_a_arr = np.array(y_true)\ny_pred_a_arr = np.array(y_pred)\n```\n\n### Multi class classification\n```python\ny_true = [0, 1, 2, 1, 2]\ny_pred = [[0.9, 0.1, 0.0], [0.3, 0.2, 0.5], [0.2, 0.3, 0.5], [0.1, 0.8, 0.1], [0.1, 0.2, 0.7]]\n\ny_test_b_lst = y_true\ny_pred_b_lst = y_pred\n\ny_test_b_arr = np.array(y_true)\ny_pred_b_arr = np.array(y_pred)\n```\n\n### Multi label classification\n```python\ny_test = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]\ny_pred = [[0, 1, 2], [3, 4, 5], [6, 7, 9]]\n\ny_test_c_lst = y_test\ny_pred_c_lst = y_pred\n\ny_test_c_arr = np.array(y_true)\ny_pred_c_arr = np.array(y_pred)\n```\n### Regression\n```python\ny_true = [2.5, 3.0, 4.0, 5.5, 6.0]\ny_pred = [2.0, 3.5, 3.8, 5.0, 6.5]\n\ny_test_d_lst = y_true\ny_pred_d_lst = y_pred\n\ny_test_d_arr = np.array(y_true)\ny_pred_d_arr = np.array(y_pred)\n```\n\n### Assossiation Rules\n```python\nimport pandas as pd\nimport numpy as np\n\n# Create a dataframe with random values\ndf_assossiation = pd.DataFrame({\n    'ID_PRNCPAL': np.random.randint(1, 50000, size=103846),\n    'CONFIDENCE': np.random.uniform(0.01, 0.03, size=103846)\n})\n\ndf_assossiation.sort_values('ID_PRNCPAL')\n```\n\n\n\n### Solution Evaluation\n```python\nimport ai_management as aim \nclient_bq = bigquery.Client(project='project')\nme = aim.ModelEvaluation(\n    client_bq=client_bq,\n    destination='project.dataset.table'\n)\n\n# Historizing standard metrics\nme.historize_model_evaluation(\n    soltn_nm = 'Solution X', \n    lst_mdls = [\n        {\n            'mdl_nm' : 'Model A',\n            'algrthm_typ' : 'binary_classification',\n            'data' : [y_test_a_lst, y_pred_a_lst]}, \n        {\n            'mdl_nm' : 'Model B',\n            'algrthm_typ' : 'multi_class_classification',\n            'data' : [y_test_b_lst, y_pred_b_lst]},\n        {\n            'mdl_nm' : 'Model C',\n            'algrthm_typ' : 'multi_label_classification',\n            'data' : [y_test_c_lst, y_pred_c_lst]},\n        {\n            'mdl_nm' : 'Model D',\n            'algrthm_typ' : 'assossiation',\n            'data' : ['confidence', df_assossiation]},\n    ]\n)\n\n# Historizing custom metrics\nme.historize_custom_metric(\n    soltn_nm = \"Solution Y\",\n    lst_mdls = [\n        {\n            'mdl_nm': 'Model E',\n            'algrthm_typ': 'regression',\n            'data': [\n                [\"Lin's Concordance Correlation Coefficient\", 0.85, None],\n                [\"Huber's error\", 123, {\"delta\": 0.75}],\n            ]\n        },\n    ]\n)\n```\n\n## Contact\n\n* Leroy Merlin Brazil AI scientists and developers: chapter_inteligencia_artificia@leroymerlin.com.br\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "This is a toolbox to help AI & ML teams to have a better management of their metrics.",
    "version": "1.0.40",
    "project_urls": {
        "Bug Tracker": "https://github.com/adeo/aim/issues",
        "Homepage": "https://github.com/adeo/aim"
    },
    "split_keywords": [
        "management",
        "toolbox",
        "lmbr",
        "ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6d64b478c28fb2184513877d6703019d0882a4f73b876de5ac6492a1cde52a6c",
                "md5": "ad9347c756ce905a1a5585064575f040",
                "sha256": "014c2fc611ec9ab402327d25e9716785172f9c580bcadf3bd149d0013de2d0a0"
            },
            "downloads": -1,
            "filename": "ai_management-1.0.40-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ad9347c756ce905a1a5585064575f040",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 22901,
            "upload_time": "2024-01-17T17:29:34",
            "upload_time_iso_8601": "2024-01-17T17:29:34.877765Z",
            "url": "https://files.pythonhosted.org/packages/6d/64/b478c28fb2184513877d6703019d0882a4f73b876de5ac6492a1cde52a6c/ai_management-1.0.40-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bd033a86ba2e45e4567d256559f4e7d6754f99e0955d632dbc8b0c041ad69f28",
                "md5": "aeb9412e8e4215c63219022184df71b2",
                "sha256": "883173bbce3760ce490472ad4ea37051fc917180d06ddf9c4a9971eb003f07df"
            },
            "downloads": -1,
            "filename": "ai_management-1.0.40.tar.gz",
            "has_sig": false,
            "md5_digest": "aeb9412e8e4215c63219022184df71b2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10933,
            "upload_time": "2024-01-17T17:29:47",
            "upload_time_iso_8601": "2024-01-17T17:29:47.779765Z",
            "url": "https://files.pythonhosted.org/packages/bd/03/3a86ba2e45e4567d256559f4e7d6754f99e0955d632dbc8b0c041ad69f28/ai_management-1.0.40.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-17 17:29:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "adeo",
    "github_project": "aim",
    "github_not_found": true,
    "lcname": "ai-management"
}
        
Elapsed time: 0.21087s