aibench


Nameaibench JSON
Version 0.0.5 PyPI version JSON
download
home_pagehttps://github.com/BasedLabs/aibenchmark/
Summary
upload_time2023-06-29 19:22:20
maintainer
docs_urlNone
authorBased Labs
requires_python
licenseMIT
keywords ai benchmark metrics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center" id="top"> 
  <img src="https://github.com/BasedLabs/aibenchmark/raw/4f774ab8ad881724103b69ecd328a1eb80a94d3b/media/aibenchmark-logo.png" width="250px" alt="aibencharmk" />

  &#xa0;

  <!-- <a href="https://aibenchmark.netlify.app">Demo</a> -->
</div>

<h1 align="center">AIBenchmark</h1>
<h2 align="center">Benchmark your model against other models</h2>

<p align="center">
  <img alt="Github top language" src="https://img.shields.io/github/languages/top/BasedLabs/aibenchmark?color=56BEB8">

  <img alt="Github language count" src="https://img.shields.io/github/languages/count/BasedLabs/aibenchmark?color=56BEB8">

  <img alt="Repository size" src="https://img.shields.io/github/repo-size/BasedLabs/aibenchmark?color=56BEB8">

  <img alt="License" src="https://img.shields.io/github/license/BasedLabs/aibenchmark?color=56BEB8">

  <!-- <img alt="Github issues" src="https://img.shields.io/github/issues/BasedLabs/aibenchmark?color=56BEB8" /> -->

  <!-- <img alt="Github forks" src="https://img.shields.io/github/forks/BasedLabs/aibenchmark?color=56BEB8" /> -->

  <!-- <img alt="Github stars" src="https://img.shields.io/github/stars/BasedLabs/aibenchmark?color=56BEB8" /> -->
</p>

<!-- Status -->

<!-- <h4 align="center"> 
  🚧  NoLabs 🚀 Under construction...  🚧
</h4> 

<hr> -->

<p align="center">
  <a href="#dart-about">About</a> &#xa0; | &#xa0; 
  <a href="#sparkles-features">Features</a> &#xa0; | &#xa0;
  <a href="#Technologies">Technologies</a> &#xa0; | &#xa0;
  <a href="#checkered_flag-starting">Starting</a> &#xa0; | &#xa0;
  <a href="#memo-license">License</a> &#xa0; | &#xa0;
  <a href="https://github.com/BasedLabs" target="_blank">Author</a>
</p>

<br>

## Installation ##

Run this script in your terminal:
```bash
$ pip install aibench
```

## About ##

AIBenchmark is a package which lets you quickly get the benchmark of your model based on the popular datasets and compare with existing leaderboard. It also has a nice collection of metrics which you could easily import.

We currently support 14 text-based and 2 image-based datasets for AutoBenchmarking aiming for regression/classification tasks. Available datasets could be found in aibenchmark/dataset.py file. 

Or run the following code:

```python

from aibenchmark.dataset import DatasetsList

print(list(DatasetsList.get_available_datasets()))

```

Code example for benchmarking:

```python
from aibenchmark.benchmark import Benchmark
from aibenchmark.dataset import DatasetInfo, DatasetsList


benchmark = Benchmark(DatasetsList.Texts.SST)
dataset_info: DatasetInfo = benchmark.dataset_info
print(dataset_info)

test_features = dataset_info.data['Texts']
model = torch.load(...)
# Implement your code based on the type of model you use, your pre- and post-processing etc.
outputs = model.predict(test_features)

# Results of your model based on predictions
benchmark_results = benchmark.run(predictions=outputs, metrics=['accuracy', 'precision', 'recall', 'f1_score']) 

# Metrics
print(benchmark_results)
# Existing leaderboard for this dataset
print(benchmark.get_existing_benchmarks())
```

## Features ##

1) Fast comparison of metrics of your model and other SOTA models for particular dataset
2) Supporting 16+ most populat datasets, the list is always updating. Soon we willl support more than 1000 datasets
3) All metrics in one place and we are adding new ones in a standardised way

## Technologies ##

The following tools were used in this project:

- [Pytorch](https://pytorch.org/)
- [Transformers](https://huggingface.co/transformers)
- [Scikit-learn](https://scikit-learn.org/stable/)


## :memo: License ##

This project is under license from MIT. For more details, see the [LICENSE](LICENSE.md) file.


Made by <a href="https://github.com/jaktenstid" target="_blank">Igor</a> and <a href="https://github.com/timurishmuratov7" target="_blank">Tim</a>

&#xa0;

<a href="#top">Back to top</a>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/BasedLabs/aibenchmark/",
    "name": "aibench",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "ai benchmark metrics",
    "author": "Based Labs",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/14/e8/b9059615ad115e612f43c19f6290cea6410cd9273b20050d3135e3d9912a/aibench-0.0.5.tar.gz",
    "platform": null,
    "description": "<div align=\"center\" id=\"top\"> \n  <img src=\"https://github.com/BasedLabs/aibenchmark/raw/4f774ab8ad881724103b69ecd328a1eb80a94d3b/media/aibenchmark-logo.png\" width=\"250px\" alt=\"aibencharmk\" />\n\n  &#xa0;\n\n  <!-- <a href=\"https://aibenchmark.netlify.app\">Demo</a> -->\n</div>\n\n<h1 align=\"center\">AIBenchmark</h1>\n<h2 align=\"center\">Benchmark your model against other models</h2>\n\n<p align=\"center\">\n  <img alt=\"Github top language\" src=\"https://img.shields.io/github/languages/top/BasedLabs/aibenchmark?color=56BEB8\">\n\n  <img alt=\"Github language count\" src=\"https://img.shields.io/github/languages/count/BasedLabs/aibenchmark?color=56BEB8\">\n\n  <img alt=\"Repository size\" src=\"https://img.shields.io/github/repo-size/BasedLabs/aibenchmark?color=56BEB8\">\n\n  <img alt=\"License\" src=\"https://img.shields.io/github/license/BasedLabs/aibenchmark?color=56BEB8\">\n\n  <!-- <img alt=\"Github issues\" src=\"https://img.shields.io/github/issues/BasedLabs/aibenchmark?color=56BEB8\" /> -->\n\n  <!-- <img alt=\"Github forks\" src=\"https://img.shields.io/github/forks/BasedLabs/aibenchmark?color=56BEB8\" /> -->\n\n  <!-- <img alt=\"Github stars\" src=\"https://img.shields.io/github/stars/BasedLabs/aibenchmark?color=56BEB8\" /> -->\n</p>\n\n<!-- Status -->\n\n<!-- <h4 align=\"center\"> \n  \ud83d\udea7  NoLabs \ud83d\ude80 Under construction...  \ud83d\udea7\n</h4> \n\n<hr> -->\n\n<p align=\"center\">\n  <a href=\"#dart-about\">About</a> &#xa0; | &#xa0; \n  <a href=\"#sparkles-features\">Features</a> &#xa0; | &#xa0;\n  <a href=\"#Technologies\">Technologies</a> &#xa0; | &#xa0;\n  <a href=\"#checkered_flag-starting\">Starting</a> &#xa0; | &#xa0;\n  <a href=\"#memo-license\">License</a> &#xa0; | &#xa0;\n  <a href=\"https://github.com/BasedLabs\" target=\"_blank\">Author</a>\n</p>\n\n<br>\n\n## Installation ##\n\nRun this script in your terminal:\n```bash\n$ pip install aibench\n```\n\n## About ##\n\nAIBenchmark is a package which lets you quickly get the benchmark of your model based on the popular datasets and compare with existing leaderboard. It also has a nice collection of metrics which you could easily import.\n\nWe currently support 14 text-based and 2 image-based datasets for AutoBenchmarking aiming for regression/classification tasks. Available datasets could be found in aibenchmark/dataset.py file. \n\nOr run the following code:\n\n```python\n\nfrom aibenchmark.dataset import DatasetsList\n\nprint(list(DatasetsList.get_available_datasets()))\n\n```\n\nCode example for benchmarking:\n\n```python\nfrom aibenchmark.benchmark import Benchmark\nfrom aibenchmark.dataset import DatasetInfo, DatasetsList\n\n\nbenchmark = Benchmark(DatasetsList.Texts.SST)\ndataset_info: DatasetInfo = benchmark.dataset_info\nprint(dataset_info)\n\ntest_features = dataset_info.data['Texts']\nmodel = torch.load(...)\n# Implement your code based on the type of model you use, your pre- and post-processing etc.\noutputs = model.predict(test_features)\n\n# Results of your model based on predictions\nbenchmark_results = benchmark.run(predictions=outputs, metrics=['accuracy', 'precision', 'recall', 'f1_score']) \n\n# Metrics\nprint(benchmark_results)\n# Existing leaderboard for this dataset\nprint(benchmark.get_existing_benchmarks())\n```\n\n## Features ##\n\n1) Fast comparison of metrics of your model and other SOTA models for particular dataset\n2) Supporting 16+ most populat datasets, the list is always updating. Soon we willl support more than 1000 datasets\n3) All metrics in one place and we are adding new ones in a standardised way\n\n## Technologies ##\n\nThe following tools were used in this project:\n\n- [Pytorch](https://pytorch.org/)\n- [Transformers](https://huggingface.co/transformers)\n- [Scikit-learn](https://scikit-learn.org/stable/)\n\n\n## :memo: License ##\n\nThis project is under license from MIT. For more details, see the [LICENSE](LICENSE.md) file.\n\n\nMade by <a href=\"https://github.com/jaktenstid\" target=\"_blank\">Igor</a> and <a href=\"https://github.com/timurishmuratov7\" target=\"_blank\">Tim</a>\n\n&#xa0;\n\n<a href=\"#top\">Back to top</a>\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "",
    "version": "0.0.5",
    "project_urls": {
        "Homepage": "https://github.com/BasedLabs/aibenchmark/"
    },
    "split_keywords": [
        "ai",
        "benchmark",
        "metrics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5a916e4192a6e51248e148d6b1a6ef840937c0fa42b4b5e1840362fbe96af513",
                "md5": "66776fcf7ab244d1862101073dec50dd",
                "sha256": "71b62f519c22438acde8dc306a73c9ddc7bd6333456530fffeea65731d7c3b7e"
            },
            "downloads": -1,
            "filename": "aibench-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "66776fcf7ab244d1862101073dec50dd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 10754,
            "upload_time": "2023-06-29T19:22:19",
            "upload_time_iso_8601": "2023-06-29T19:22:19.531287Z",
            "url": "https://files.pythonhosted.org/packages/5a/91/6e4192a6e51248e148d6b1a6ef840937c0fa42b4b5e1840362fbe96af513/aibench-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "14e8b9059615ad115e612f43c19f6290cea6410cd9273b20050d3135e3d9912a",
                "md5": "abe81ba1f3931ca0ef789ce816eeb339",
                "sha256": "b46b4cb6a6dd1d36fef7f57d1ded5a42d9a767f108d02ee87e7a99301ed1be2d"
            },
            "downloads": -1,
            "filename": "aibench-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "abe81ba1f3931ca0ef789ce816eeb339",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10382,
            "upload_time": "2023-06-29T19:22:20",
            "upload_time_iso_8601": "2023-06-29T19:22:20.905821Z",
            "url": "https://files.pythonhosted.org/packages/14/e8/b9059615ad115e612f43c19f6290cea6410cd9273b20050d3135e3d9912a/aibench-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-29 19:22:20",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "BasedLabs",
    "github_project": "aibenchmark",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "aibench"
}
        
Elapsed time: 0.10883s