aimq


Nameaimq JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/bldxio/aimq
SummaryA robust message queue processor for Supabase pgmq with AI-powered document processing capabilities
upload_time2025-01-18 22:17:05
maintainerNone
docs_urlNone
authorAIMQ Contributors
requires_python<3.13,>=3.11
licenseMIT
keywords ai ocr document-processing supabase pgmq queue machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AIMQ

AIMQ (AI Message Queue) is a robust message queue processor designed specifically for Supabase's pgmq integration. It provides a powerful framework for processing queued tasks with built-in support for AI-powered document processing and OCR capabilities.

## Features

- **Supabase pgmq Integration**: Seamlessly process messages from Supabase's message queue
- **Document OCR Processing**: Extract text from images using EasyOCR
- **Queue-based Processing**: Efficient handling of document processing tasks
- **AI-powered Analysis**: Leverage machine learning for advanced text analysis
- **Flexible Architecture**: Easy to extend with new processing tools and capabilities

## Installation

This project uses Poetry for dependency management. To get started:

```bash
# Install Poetry if you haven't already
curl -sSL https://install.python-poetry.org | python3 -

# Clone the repository
git clone <your-repo-url>
cd aimq

# Install dependencies
poetry install
```

## Configuration

1. Create a `.env` file in the project root:
```env
SUPABASE_URL=your_supabase_url
SUPABASE_KEY=your_supabase_key
QUEUE_NAME=your_queue_name
```

2. Configure your Supabase project with pgmq following the [official documentation](https://supabase.com/docs/guides/database/extensions/pgmq).

## Usage

1. Start the processor:
```bash
poetry run python -m aimq.processor
```

2. Process documents by adding messages to your Supabase queue:
```python
from aimq.core import QueueMessage

message = QueueMessage(
    type="ocr",
    payload={
        "image_url": "https://example.com/document.jpg"
    }
)
```

## Development

To contribute to AIMQ:

1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Run tests: `poetry run pytest`
5. Submit a pull request

## License

MIT License - see [LICENSE](LICENSE) for details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/bldxio/aimq",
    "name": "aimq",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.11",
    "maintainer_email": null,
    "keywords": "ai, ocr, document-processing, supabase, pgmq, queue, machine-learning",
    "author": "AIMQ Contributors",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/e5/61/49ea70e5650833ccd51779e706f07ea5bc09f6ce7a38d2b90db0bc2154e3/aimq-0.1.0.tar.gz",
    "platform": null,
    "description": "# AIMQ\n\nAIMQ (AI Message Queue) is a robust message queue processor designed specifically for Supabase's pgmq integration. It provides a powerful framework for processing queued tasks with built-in support for AI-powered document processing and OCR capabilities.\n\n## Features\n\n- **Supabase pgmq Integration**: Seamlessly process messages from Supabase's message queue\n- **Document OCR Processing**: Extract text from images using EasyOCR\n- **Queue-based Processing**: Efficient handling of document processing tasks\n- **AI-powered Analysis**: Leverage machine learning for advanced text analysis\n- **Flexible Architecture**: Easy to extend with new processing tools and capabilities\n\n## Installation\n\nThis project uses Poetry for dependency management. To get started:\n\n```bash\n# Install Poetry if you haven't already\ncurl -sSL https://install.python-poetry.org | python3 -\n\n# Clone the repository\ngit clone <your-repo-url>\ncd aimq\n\n# Install dependencies\npoetry install\n```\n\n## Configuration\n\n1. Create a `.env` file in the project root:\n```env\nSUPABASE_URL=your_supabase_url\nSUPABASE_KEY=your_supabase_key\nQUEUE_NAME=your_queue_name\n```\n\n2. Configure your Supabase project with pgmq following the [official documentation](https://supabase.com/docs/guides/database/extensions/pgmq).\n\n## Usage\n\n1. Start the processor:\n```bash\npoetry run python -m aimq.processor\n```\n\n2. Process documents by adding messages to your Supabase queue:\n```python\nfrom aimq.core import QueueMessage\n\nmessage = QueueMessage(\n    type=\"ocr\",\n    payload={\n        \"image_url\": \"https://example.com/document.jpg\"\n    }\n)\n```\n\n## Development\n\nTo contribute to AIMQ:\n\n1. Fork the repository\n2. Create a feature branch\n3. Make your changes\n4. Run tests: `poetry run pytest`\n5. Submit a pull request\n\n## License\n\nMIT License - see [LICENSE](LICENSE) for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A robust message queue processor for Supabase pgmq with AI-powered document processing capabilities",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://bldxio.github.io/aimq",
        "Homepage": "https://github.com/bldxio/aimq",
        "Repository": "https://github.com/bldxio/aimq"
    },
    "split_keywords": [
        "ai",
        " ocr",
        " document-processing",
        " supabase",
        " pgmq",
        " queue",
        " machine-learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "992d225c515a306d4fd6312c01915f174401748d9d885753f14583326aa97574",
                "md5": "ebd6a83dcb0a75c3667a9fbff62d1896",
                "sha256": "c81998eb6dc50883af4f39aa71ab4584f278063b5cc7280483dadab8e2531dac"
            },
            "downloads": -1,
            "filename": "aimq-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ebd6a83dcb0a75c3667a9fbff62d1896",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.11",
            "size": 28493,
            "upload_time": "2025-01-18T22:17:03",
            "upload_time_iso_8601": "2025-01-18T22:17:03.598222Z",
            "url": "https://files.pythonhosted.org/packages/99/2d/225c515a306d4fd6312c01915f174401748d9d885753f14583326aa97574/aimq-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e56149ea70e5650833ccd51779e706f07ea5bc09f6ce7a38d2b90db0bc2154e3",
                "md5": "e29fed772c1c44346377eadee7d26fd1",
                "sha256": "bda06e58bd5eb84e0b00f36b745e158f5f93c59a21e32bfc06c3398622cd2929"
            },
            "downloads": -1,
            "filename": "aimq-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "e29fed772c1c44346377eadee7d26fd1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.11",
            "size": 20774,
            "upload_time": "2025-01-18T22:17:05",
            "upload_time_iso_8601": "2025-01-18T22:17:05.746100Z",
            "url": "https://files.pythonhosted.org/packages/e5/61/49ea70e5650833ccd51779e706f07ea5bc09f6ce7a38d2b90db0bc2154e3/aimq-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-18 22:17:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bldxio",
    "github_project": "aimq",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "aimq"
}
        
Elapsed time: 0.44300s