![GPLv3 License](https://img.shields.io/badge/License-GPL%20v3-yellow.svg)
![GitHub Workflow Status (with branch)](https://img.shields.io/github/actions/workflow/status/zacjiker/airgym/build.yml)
![GitHub all releases](https://img.shields.io/github/downloads/zacjiker/airgym/total)
![PyPI](https://img.shields.io/pypi/v/airgym)
# XPlane Gym Environment
This project provides an OpenAI Gym environment for training reinforcement learning agents on an XPlane simulator. The environment allows agents to control an aircraft and receive rewards based on how well they perform a task, such as flying a certain trajectory or landing safely.
## Installation
To install the package, run the following command:
```bash
pip install airgym
```
## Usage/Examples
To use the environment in your Python code, you can import it as follows:
```python
import airgym
import gym
# If XPlane is running on the same machine, you can use the default address and port.
# Or, set ip address and port according to your configuration.
env = gym.make('AirGym-v1')
episods = 0
for episod in range(episods):
obs = env.reset()
done = False
while not done:
actions = env.action_space.sample()
obs, reward, done, info = env.step(action)
env.close()
```
Raw data
{
"_id": null,
"home_page": "https://github.com/zacjiker/airgym",
"name": "airgym",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "openai,gym,xplane,reinforcement learning,rl,environment,ai,artificial intelligence,machine learning,ml",
"author": "SAUVECANNE, Baptiste",
"author_email": "contact@baptistesauvecanne.fr",
"download_url": "https://files.pythonhosted.org/packages/cc/b6/f49d9942ca52d5187bec5d31016855f187ee373861b7662fa1bc716d8c16/airgym-0.0.5.tar.gz",
"platform": null,
"description": "![GPLv3 License](https://img.shields.io/badge/License-GPL%20v3-yellow.svg)\n![GitHub Workflow Status (with branch)](https://img.shields.io/github/actions/workflow/status/zacjiker/airgym/build.yml)\n![GitHub all releases](https://img.shields.io/github/downloads/zacjiker/airgym/total)\n![PyPI](https://img.shields.io/pypi/v/airgym)\n\n# XPlane Gym Environment\n\nThis project provides an OpenAI Gym environment for training reinforcement learning agents on an XPlane simulator. The environment allows agents to control an aircraft and receive rewards based on how well they perform a task, such as flying a certain trajectory or landing safely.\n\n## Installation\n\nTo install the package, run the following command:\n\n```bash\n pip install airgym\n```\n \n## Usage/Examples\n\nTo use the environment in your Python code, you can import it as follows:\n\n```python\nimport airgym\nimport gym\n\n# If XPlane is running on the same machine, you can use the default address and port. \n# Or, set ip address and port according to your configuration.\nenv = gym.make('AirGym-v1')\n\nepisods = 0\n\nfor episod in range(episods):\n obs = env.reset()\n done = False\n\n while not done:\n actions = env.action_space.sample()\n obs, reward, done, info = env.step(action)\n\nenv.close()\n```\n",
"bugtrack_url": null,
"license": "GPL-3.0",
"summary": "OpenAI Gym environment for training reinforcement learning agents on an XPlane simulator",
"version": "0.0.5",
"split_keywords": [
"openai",
"gym",
"xplane",
"reinforcement learning",
"rl",
"environment",
"ai",
"artificial intelligence",
"machine learning",
"ml"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b62a52ac423f62d113d96ae0b866417d64374774c9d5154ad4fa4282fa056b3f",
"md5": "cf11ac7bc84034fcb29f2e1580e02cb8",
"sha256": "34b1886eeba5a7893d09ae2381f920913188b9a78cb437c17e3bdeba37af49ee"
},
"downloads": -1,
"filename": "airgym-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cf11ac7bc84034fcb29f2e1580e02cb8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 21573,
"upload_time": "2023-03-27T15:27:52",
"upload_time_iso_8601": "2023-03-27T15:27:52.650324Z",
"url": "https://files.pythonhosted.org/packages/b6/2a/52ac423f62d113d96ae0b866417d64374774c9d5154ad4fa4282fa056b3f/airgym-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ccb6f49d9942ca52d5187bec5d31016855f187ee373861b7662fa1bc716d8c16",
"md5": "c96879c72292f8d15650f138075624df",
"sha256": "842d0e977d1048f2f373dd1b67a2d5e0de10b84281226b26fff5b7bbcc3e21d1"
},
"downloads": -1,
"filename": "airgym-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "c96879c72292f8d15650f138075624df",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 21581,
"upload_time": "2023-03-27T15:27:55",
"upload_time_iso_8601": "2023-03-27T15:27:55.176623Z",
"url": "https://files.pythonhosted.org/packages/cc/b6/f49d9942ca52d5187bec5d31016855f187ee373861b7662fa1bc716d8c16/airgym-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-27 15:27:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "zacjiker",
"github_project": "airgym",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "airgym"
}