amulety


Nameamulety JSON
Version 1.0 PyPI version JSON
download
home_pagehttps://github.com/immcantation/amulety
SummaryPython package to create embeddings of BCR amino acid sequences.
upload_time2024-05-24 18:48:10
maintainerNone
docs_urlNone
authorMamie Wang, Gisela Gabernet, Steven Kleinstein
requires_python<4,>=3.8
licenseMIT
keywords immcantation immunoinformatics bioinformatics embedding antibody bcr machine learning biology ngs next generation sequencing
VCS
bugtrack_url
requirements numpy pandas torch transformers typer antiberty rjieba pre-commit pytest-workflow pytest
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AMULETY

Amulety stands for Adaptive imMUne receptor Language model Embedding Tool.
It is a Python command line tool to embed B-cell receptor (antibody) and T-cell Receptor amino acid sequences using pre-trained protein or antibody language models. So far only BCR embeddings are supported but TCR support is planned for future releases. The package also has functionality to translate nucleotide sequences to amino acids wiht IgBlast to make sure that they are in-frame.

Integrated embedding models are:

- antiBERTy
- antiBERTa2
- ESM2
- Custom models

## Installation

You can install AMULETY using pip:

```bash
pip install amulety
```

## Usage

To print the usage help for the AMULETY package then type:

```bash
amulety --help
```

The full documentation can also be found on the readthedocs page.

## Contact

For help and questions please contact the Immcantation Group.

## Authors

[Mamie Wang](https://github.com/mamie) (aut,cre)
[Gisela Gabernet](https://github.com/ggabernet) (aut,cre)
[Steven Kleinstein](mailto:steven.kleinstein@yale.edu) (aut,cph)

## Citing

This package is not yet published.

To cite the paper comparing the embedding methods on BCR sequences, please cite:

> Supervised fine-tuning of pre-trained antibody language models improves antigen specificity prediction.
> Meng Wang, Jonathan Patsenker, Henry Li, Yuval Kluger, Steven H. Kleinstein.
> BioRXiv 2024. DOI: [https://doi.org/10.1101/2024.05.13.593807](https://doi.org/10.1101/2024.05.13.593807).

## License

This project is licensed under the terms of the GPL v3 license. See the LICENSE file for details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/immcantation/amulety",
    "name": "amulety",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4,>=3.8",
    "maintainer_email": null,
    "keywords": "immcantation, immunoinformatics, bioinformatics, embedding, antibody, BCR, Machine Learning, biology, NGS, next generation sequencing",
    "author": "Mamie Wang, Gisela Gabernet, Steven Kleinstein",
    "author_email": "mamie.wang@yale.edu, gisela.gabernet@yale.edu, steven.kleinstein@yale.edu",
    "download_url": "https://files.pythonhosted.org/packages/9a/84/e8e942f570869f32ce63e1c59d1367a45a2518442aafbf9b9c859472ab70/amulety-1.0.tar.gz",
    "platform": null,
    "description": "# AMULETY\n\nAmulety stands for Adaptive imMUne receptor Language model Embedding Tool.\nIt is a Python command line tool to embed B-cell receptor (antibody) and T-cell Receptor amino acid sequences using pre-trained protein or antibody language models. So far only BCR embeddings are supported but TCR support is planned for future releases. The package also has functionality to translate nucleotide sequences to amino acids wiht IgBlast to make sure that they are in-frame.\n\nIntegrated embedding models are:\n\n- antiBERTy\n- antiBERTa2\n- ESM2\n- Custom models\n\n## Installation\n\nYou can install AMULETY using pip:\n\n```bash\npip install amulety\n```\n\n## Usage\n\nTo print the usage help for the AMULETY package then type:\n\n```bash\namulety --help\n```\n\nThe full documentation can also be found on the readthedocs page.\n\n## Contact\n\nFor help and questions please contact the Immcantation Group.\n\n## Authors\n\n[Mamie Wang](https://github.com/mamie) (aut,cre)\n[Gisela Gabernet](https://github.com/ggabernet) (aut,cre)\n[Steven Kleinstein](mailto:steven.kleinstein@yale.edu) (aut,cph)\n\n## Citing\n\nThis package is not yet published.\n\nTo cite the paper comparing the embedding methods on BCR sequences, please cite:\n\n> Supervised fine-tuning of pre-trained antibody language models improves antigen specificity prediction.\n> Meng Wang, Jonathan Patsenker, Henry Li, Yuval Kluger, Steven H. Kleinstein.\n> BioRXiv 2024. DOI: [https://doi.org/10.1101/2024.05.13.593807](https://doi.org/10.1101/2024.05.13.593807).\n\n## License\n\nThis project is licensed under the terms of the GPL v3 license. See the LICENSE file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python package to create embeddings of BCR amino acid sequences.",
    "version": "1.0",
    "project_urls": {
        "Homepage": "https://github.com/immcantation/amulety"
    },
    "split_keywords": [
        "immcantation",
        " immunoinformatics",
        " bioinformatics",
        " embedding",
        " antibody",
        " bcr",
        " machine learning",
        " biology",
        " ngs",
        " next generation sequencing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "139461853b703f198f0537fd7963b75dbd6b9a6abb796b04a46830a6e8ec843f",
                "md5": "0c9f320dbf6cbbf0e642f18f2bc2016e",
                "sha256": "8672e6bc651aee006e9b1bb1b4464ac11bd61d9b7650d55062d4eee610bd71ff"
            },
            "downloads": -1,
            "filename": "amulety-1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0c9f320dbf6cbbf0e642f18f2bc2016e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4,>=3.8",
            "size": 23526,
            "upload_time": "2024-05-24T18:48:08",
            "upload_time_iso_8601": "2024-05-24T18:48:08.984938Z",
            "url": "https://files.pythonhosted.org/packages/13/94/61853b703f198f0537fd7963b75dbd6b9a6abb796b04a46830a6e8ec843f/amulety-1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9a84e8e942f570869f32ce63e1c59d1367a45a2518442aafbf9b9c859472ab70",
                "md5": "32cc2852026a66110f47035399f670f1",
                "sha256": "5dde40ffe45a22bf32be74f6fa116de2540bf5bcbc3f164fb5e4b9db5344afaa"
            },
            "downloads": -1,
            "filename": "amulety-1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "32cc2852026a66110f47035399f670f1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4,>=3.8",
            "size": 23884,
            "upload_time": "2024-05-24T18:48:10",
            "upload_time_iso_8601": "2024-05-24T18:48:10.836812Z",
            "url": "https://files.pythonhosted.org/packages/9a/84/e8e942f570869f32ce63e1c59d1367a45a2518442aafbf9b9c859472ab70/amulety-1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-24 18:48:10",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "immcantation",
    "github_project": "amulety",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "transformers",
            "specs": []
        },
        {
            "name": "typer",
            "specs": []
        },
        {
            "name": "antiberty",
            "specs": []
        },
        {
            "name": "rjieba",
            "specs": []
        },
        {
            "name": "pre-commit",
            "specs": []
        },
        {
            "name": "pytest-workflow",
            "specs": [
                [
                    ">=",
                    "1.6.0"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    ">=",
                    "7.0.0"
                ]
            ]
        }
    ],
    "lcname": "amulety"
}
        
Elapsed time: 0.55500s