ant-ray


Nameant-ray JSON
Version 3.0.0.dev2 PyPI version JSON
download
home_pagehttps://github.com/ray-project/ray
SummaryRay provides a simple, universal API for building distributed applications.
upload_time2025-01-15 13:35:39
maintainerNone
docs_urlNone
authorRay Team
requires_python>=3.9
licenseApache 2.0
keywords ray distributed parallel machine-learning hyperparameter-tuningreinforcement-learning deep-learning serving python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png

.. image:: https://readthedocs.org/projects/ray/badge/?version=master
    :target: http://docs.ray.io/en/master/?badge=master

.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue
    :target: https://forms.gle/9TSdDYUgxYs8SA9e8

.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue
    :target: https://discuss.ray.io/

.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter
    :target: https://twitter.com/raydistributed

.. image:: https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D
   :target: https://www.anyscale.com/ray-on-anyscale?utm_source=github&utm_medium=ray_readme&utm_campaign=get_started_badge

Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:

.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg

..
  https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit

Learn more about `Ray AI Libraries`_:

- `Data`_: Scalable Datasets for ML
- `Train`_: Distributed Training
- `Tune`_: Scalable Hyperparameter Tuning
- `RLlib`_: Scalable Reinforcement Learning
- `Serve`_: Scalable and Programmable Serving

Or more about `Ray Core`_ and its key abstractions:

- `Tasks`_: Stateless functions executed in the cluster.
- `Actors`_: Stateful worker processes created in the cluster.
- `Objects`_: Immutable values accessible across the cluster.

Learn more about Monitoring and Debugging:

- Monitor Ray apps and clusters with the `Ray Dashboard <https://docs.ray.io/en/latest/ray-core/ray-dashboard.html>`__.
- Debug Ray apps with the `Ray Distributed Debugger <https://docs.ray.io/en/latest/ray-observability/ray-distributed-debugger.html>`__.

Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing
`ecosystem of community integrations`_.

Install Ray with: ``pip install ray``. For nightly wheels, see the
`Installation page <https://docs.ray.io/en/latest/ray-overview/installation.html>`__.

.. _`Serve`: https://docs.ray.io/en/latest/serve/index.html
.. _`Data`: https://docs.ray.io/en/latest/data/dataset.html
.. _`Workflow`: https://docs.ray.io/en/latest/workflows/concepts.html
.. _`Train`: https://docs.ray.io/en/latest/train/train.html
.. _`Tune`: https://docs.ray.io/en/latest/tune/index.html
.. _`RLlib`: https://docs.ray.io/en/latest/rllib/index.html
.. _`ecosystem of community integrations`: https://docs.ray.io/en/latest/ray-overview/ray-libraries.html


Why Ray?
--------

Today's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.

Ray is a unified way to scale Python and AI applications from a laptop to a cluster.

With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.

More Information
----------------

- `Documentation`_
- `Ray Architecture whitepaper`_
- `Exoshuffle: large-scale data shuffle in Ray`_
- `Ownership: a distributed futures system for fine-grained tasks`_
- `RLlib paper`_
- `Tune paper`_

*Older documents:*

- `Ray paper`_
- `Ray HotOS paper`_
- `Ray Architecture v1 whitepaper`_

.. _`Ray AI Libraries`: https://docs.ray.io/en/latest/ray-air/getting-started.html
.. _`Ray Core`: https://docs.ray.io/en/latest/ray-core/walkthrough.html
.. _`Tasks`: https://docs.ray.io/en/latest/ray-core/tasks.html
.. _`Actors`: https://docs.ray.io/en/latest/ray-core/actors.html
.. _`Objects`: https://docs.ray.io/en/latest/ray-core/objects.html
.. _`Documentation`: http://docs.ray.io/en/latest/index.html
.. _`Ray Architecture v1 whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
.. _`Ray Architecture whitepaper`: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview
.. _`Exoshuffle: large-scale data shuffle in Ray`: https://arxiv.org/abs/2203.05072
.. _`Ownership: a distributed futures system for fine-grained tasks`: https://www.usenix.org/system/files/nsdi21-wang.pdf
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118

Getting Involved
----------------

.. list-table::
   :widths: 25 50 25 25
   :header-rows: 1

   * - Platform
     - Purpose
     - Estimated Response Time
     - Support Level
   * - `Discourse Forum`_
     - For discussions about development and questions about usage.
     - < 1 day
     - Community
   * - `GitHub Issues`_
     - For reporting bugs and filing feature requests.
     - < 2 days
     - Ray OSS Team
   * - `Slack`_
     - For collaborating with other Ray users.
     - < 2 days
     - Community
   * - `StackOverflow`_
     - For asking questions about how to use Ray.
     - 3-5 days
     - Community
   * - `Meetup Group`_
     - For learning about Ray projects and best practices.
     - Monthly
     - Ray DevRel
   * - `Twitter`_
     - For staying up-to-date on new features.
     - Daily
     - Ray DevRel

.. _`Discourse Forum`: https://discuss.ray.io/
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/
.. _`Twitter`: https://twitter.com/raydistributed
.. _`Slack`: https://www.ray.io/join-slack?utm_source=github&utm_medium=ray_readme&utm_campaign=getting_involved

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ray-project/ray",
    "name": "ant-ray",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "ray distributed parallel machine-learning hyperparameter-tuningreinforcement-learning deep-learning serving python",
    "author": "Ray Team",
    "author_email": "ray-dev@googlegroups.com",
    "download_url": null,
    "platform": null,
    "description": ".. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png\n\n.. image:: https://readthedocs.org/projects/ray/badge/?version=master\n    :target: http://docs.ray.io/en/master/?badge=master\n\n.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue\n    :target: https://forms.gle/9TSdDYUgxYs8SA9e8\n\n.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue\n    :target: https://discuss.ray.io/\n\n.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter\n    :target: https://twitter.com/raydistributed\n\n.. image:: https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D\n   :target: https://www.anyscale.com/ray-on-anyscale?utm_source=github&utm_medium=ray_readme&utm_campaign=get_started_badge\n\nRay is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:\n\n.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg\n\n..\n  https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit\n\nLearn more about `Ray AI Libraries`_:\n\n- `Data`_: Scalable Datasets for ML\n- `Train`_: Distributed Training\n- `Tune`_: Scalable Hyperparameter Tuning\n- `RLlib`_: Scalable Reinforcement Learning\n- `Serve`_: Scalable and Programmable Serving\n\nOr more about `Ray Core`_ and its key abstractions:\n\n- `Tasks`_: Stateless functions executed in the cluster.\n- `Actors`_: Stateful worker processes created in the cluster.\n- `Objects`_: Immutable values accessible across the cluster.\n\nLearn more about Monitoring and Debugging:\n\n- Monitor Ray apps and clusters with the `Ray Dashboard <https://docs.ray.io/en/latest/ray-core/ray-dashboard.html>`__.\n- Debug Ray apps with the `Ray Distributed Debugger <https://docs.ray.io/en/latest/ray-observability/ray-distributed-debugger.html>`__.\n\nRay runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing\n`ecosystem of community integrations`_.\n\nInstall Ray with: ``pip install ray``. For nightly wheels, see the\n`Installation page <https://docs.ray.io/en/latest/ray-overview/installation.html>`__.\n\n.. _`Serve`: https://docs.ray.io/en/latest/serve/index.html\n.. _`Data`: https://docs.ray.io/en/latest/data/dataset.html\n.. _`Workflow`: https://docs.ray.io/en/latest/workflows/concepts.html\n.. _`Train`: https://docs.ray.io/en/latest/train/train.html\n.. _`Tune`: https://docs.ray.io/en/latest/tune/index.html\n.. _`RLlib`: https://docs.ray.io/en/latest/rllib/index.html\n.. _`ecosystem of community integrations`: https://docs.ray.io/en/latest/ray-overview/ray-libraries.html\n\n\nWhy Ray?\n--------\n\nToday's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.\n\nRay is a unified way to scale Python and AI applications from a laptop to a cluster.\n\nWith Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.\n\nMore Information\n----------------\n\n- `Documentation`_\n- `Ray Architecture whitepaper`_\n- `Exoshuffle: large-scale data shuffle in Ray`_\n- `Ownership: a distributed futures system for fine-grained tasks`_\n- `RLlib paper`_\n- `Tune paper`_\n\n*Older documents:*\n\n- `Ray paper`_\n- `Ray HotOS paper`_\n- `Ray Architecture v1 whitepaper`_\n\n.. _`Ray AI Libraries`: https://docs.ray.io/en/latest/ray-air/getting-started.html\n.. _`Ray Core`: https://docs.ray.io/en/latest/ray-core/walkthrough.html\n.. _`Tasks`: https://docs.ray.io/en/latest/ray-core/tasks.html\n.. _`Actors`: https://docs.ray.io/en/latest/ray-core/actors.html\n.. _`Objects`: https://docs.ray.io/en/latest/ray-core/objects.html\n.. _`Documentation`: http://docs.ray.io/en/latest/index.html\n.. _`Ray Architecture v1 whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview\n.. _`Ray Architecture whitepaper`: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview\n.. _`Exoshuffle: large-scale data shuffle in Ray`: https://arxiv.org/abs/2203.05072\n.. _`Ownership: a distributed futures system for fine-grained tasks`: https://www.usenix.org/system/files/nsdi21-wang.pdf\n.. _`Ray paper`: https://arxiv.org/abs/1712.05889\n.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924\n.. _`RLlib paper`: https://arxiv.org/abs/1712.09381\n.. _`Tune paper`: https://arxiv.org/abs/1807.05118\n\nGetting Involved\n----------------\n\n.. list-table::\n   :widths: 25 50 25 25\n   :header-rows: 1\n\n   * - Platform\n     - Purpose\n     - Estimated Response Time\n     - Support Level\n   * - `Discourse Forum`_\n     - For discussions about development and questions about usage.\n     - < 1 day\n     - Community\n   * - `GitHub Issues`_\n     - For reporting bugs and filing feature requests.\n     - < 2 days\n     - Ray OSS Team\n   * - `Slack`_\n     - For collaborating with other Ray users.\n     - < 2 days\n     - Community\n   * - `StackOverflow`_\n     - For asking questions about how to use Ray.\n     - 3-5 days\n     - Community\n   * - `Meetup Group`_\n     - For learning about Ray projects and best practices.\n     - Monthly\n     - Ray DevRel\n   * - `Twitter`_\n     - For staying up-to-date on new features.\n     - Daily\n     - Ray DevRel\n\n.. _`Discourse Forum`: https://discuss.ray.io/\n.. _`GitHub Issues`: https://github.com/ray-project/ray/issues\n.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray\n.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/\n.. _`Twitter`: https://twitter.com/raydistributed\n.. _`Slack`: https://www.ray.io/join-slack?utm_source=github&utm_medium=ray_readme&utm_campaign=getting_involved\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Ray provides a simple, universal API for building distributed applications.",
    "version": "3.0.0.dev2",
    "project_urls": {
        "Homepage": "https://github.com/ray-project/ray"
    },
    "split_keywords": [
        "ray",
        "distributed",
        "parallel",
        "machine-learning",
        "hyperparameter-tuningreinforcement-learning",
        "deep-learning",
        "serving",
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fa64286922fc316cd0a24e8f045ab9744ab1358aba2170ca0beef4326b45ba13",
                "md5": "c83214ac69c1e667f52073f0d73be9c1",
                "sha256": "4314040f6105f7f2189297edbda44d793135ff9d83a9f3dceac5cccaa0be9267"
            },
            "downloads": -1,
            "filename": "ant_ray-3.0.0.dev2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "c83214ac69c1e667f52073f0d73be9c1",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 37572135,
            "upload_time": "2025-01-15T13:35:39",
            "upload_time_iso_8601": "2025-01-15T13:35:39.675326Z",
            "url": "https://files.pythonhosted.org/packages/fa/64/286922fc316cd0a24e8f045ab9744ab1358aba2170ca0beef4326b45ba13/ant_ray-3.0.0.dev2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6241ef711a40a924111cf53508a7cf875501353fbee17df9fc71bb55a4900853",
                "md5": "38164c5ea47a66e48d1227e6d938ea75",
                "sha256": "4daa9c75dc1b8f1b96a649ceeb1f47db75d76b98c5a84a9345b9acef04476378"
            },
            "downloads": -1,
            "filename": "ant_ray-3.0.0.dev2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "38164c5ea47a66e48d1227e6d938ea75",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 37594870,
            "upload_time": "2025-01-15T13:35:45",
            "upload_time_iso_8601": "2025-01-15T13:35:45.978277Z",
            "url": "https://files.pythonhosted.org/packages/62/41/ef711a40a924111cf53508a7cf875501353fbee17df9fc71bb55a4900853/ant_ray-3.0.0.dev2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a0cff6857fe4364eee9aa749af5418964c90e16505470ec0f9badd534dabbf60",
                "md5": "4eec77df165a83f330aabe65551d1720",
                "sha256": "8028c71bded5c4ee175f88a4dc84920403e30e7e812c8ae96d1d731f4f8aaea2"
            },
            "downloads": -1,
            "filename": "ant_ray-3.0.0.dev2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "4eec77df165a83f330aabe65551d1720",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 37558060,
            "upload_time": "2025-01-15T13:35:52",
            "upload_time_iso_8601": "2025-01-15T13:35:52.618940Z",
            "url": "https://files.pythonhosted.org/packages/a0/cf/f6857fe4364eee9aa749af5418964c90e16505470ec0f9badd534dabbf60/ant_ray-3.0.0.dev2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-15 13:35:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ray-project",
    "github_project": "ray",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "ant-ray"
}
        
Elapsed time: 0.62118s