.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
.. image:: https://readthedocs.org/projects/ray/badge/?version=master
:target: http://docs.ray.io/en/master/?badge=master
.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue
:target: https://forms.gle/9TSdDYUgxYs8SA9e8
.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue
:target: https://discuss.ray.io/
.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter
:target: https://twitter.com/raydistributed
.. image:: https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D
:target: https://www.anyscale.com/ray-on-anyscale?utm_source=github&utm_medium=ray_readme&utm_campaign=get_started_badge
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg
..
https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit
Learn more about `Ray AI Libraries`_:
- `Data`_: Scalable Datasets for ML
- `Train`_: Distributed Training
- `Tune`_: Scalable Hyperparameter Tuning
- `RLlib`_: Scalable Reinforcement Learning
- `Serve`_: Scalable and Programmable Serving
Or more about `Ray Core`_ and its key abstractions:
- `Tasks`_: Stateless functions executed in the cluster.
- `Actors`_: Stateful worker processes created in the cluster.
- `Objects`_: Immutable values accessible across the cluster.
Learn more about Monitoring and Debugging:
- Monitor Ray apps and clusters with the `Ray Dashboard <https://antgroup.github.io/ant-ray/ray-core/ray-dashboard.html>`__.
- Debug Ray apps with the `Ray Distributed Debugger <https://antgroup.github.io/ant-ray/ray-observability/ray-distributed-debugger.html>`__.
Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing
`ecosystem of community integrations`_.
Install Ray with: ``pip install ray``. For nightly wheels, see the
`Installation page <https://antgroup.github.io/ant-ray/ray-overview/installation.html>`__.
**Note**: ``This documentation refers to Ant Ray - a fork of Ray maintained by Ant Group. To install this specific version, use``:
.. code-block:: bash
pip install ant-ray
.. _`Serve`: https://antgroup.github.io/ant-ray/serve/index.html
.. _`Data`: https://antgroup.github.io/ant-ray/data/dataset.html
.. _`Workflow`: https://antgroup.github.io/ant-ray/workflows/concepts.html
.. _`Train`: https://antgroup.github.io/ant-ray/train/train.html
.. _`Tune`: https://antgroup.github.io/ant-ray/tune/index.html
.. _`RLlib`: https://antgroup.github.io/ant-ray/rllib/index.html
.. _`ecosystem of community integrations`: https://antgroup.github.io/ant-ray/ray-overview/ray-libraries.html
Why Ray?
--------
Today's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.
Ray is a unified way to scale Python and AI applications from a laptop to a cluster.
With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.
More Information
----------------
- `Documentation`_
- `Ray Architecture whitepaper`_
- `Exoshuffle: large-scale data shuffle in Ray`_
- `Ownership: a distributed futures system for fine-grained tasks`_
- `RLlib paper`_
- `Tune paper`_
*Older documents:*
- `Ray paper`_
- `Ray HotOS paper`_
- `Ray Architecture v1 whitepaper`_
.. _`Ray AI Libraries`: https://antgroup.github.io/ant-ray/ray-air/getting-started.html
.. _`Ray Core`: https://antgroup.github.io/ant-ray/ray-core/walkthrough.html
.. _`Tasks`: https://antgroup.github.io/ant-ray/ray-core/tasks.html
.. _`Actors`: https://antgroup.github.io/ant-ray/ray-core/actors.html
.. _`Objects`: https://antgroup.github.io/ant-ray/ray-core/objects.html
.. _`Documentation`: http://antgroup.github.io/ant-ray/index.html
.. _`Ray Architecture v1 whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
.. _`Ray Architecture whitepaper`: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview
.. _`Exoshuffle: large-scale data shuffle in Ray`: https://arxiv.org/abs/2203.05072
.. _`Ownership: a distributed futures system for fine-grained tasks`: https://www.usenix.org/system/files/nsdi21-wang.pdf
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
Getting Involved
----------------
.. list-table::
:widths: 25 50 25 25
:header-rows: 1
* - Platform
- Purpose
- Estimated Response Time
- Support Level
* - `Discourse Forum`_
- For discussions about development and questions about usage.
- < 1 day
- Community
* - `GitHub Issues`_
- For reporting bugs and filing feature requests.
- < 2 days
- Ray OSS Team
* - `Slack`_
- For collaborating with other Ray users.
- < 2 days
- Community
* - `StackOverflow`_
- For asking questions about how to use Ray.
- 3-5 days
- Community
* - `Meetup Group`_
- For learning about Ray projects and best practices.
- Monthly
- Ray DevRel
* - `Twitter`_
- For staying up-to-date on new features.
- Daily
- Ray DevRel
.. _`Discourse Forum`: https://discuss.ray.io/
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/
.. _`Twitter`: https://twitter.com/raydistributed
.. _`Slack`: https://www.ray.io/join-slack?utm_source=github&utm_medium=ray_readme&utm_campaign=getting_involved
Raw data
{
"_id": null,
"home_page": "https://github.com/ray-project/ray",
"name": "ant-ray",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "ray distributed parallel machine-learning hyperparameter-tuningreinforcement-learning deep-learning serving python",
"author": "Ray Team",
"author_email": "ray-dev@googlegroups.com",
"download_url": null,
"platform": null,
"description": ".. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png\n\n.. image:: https://readthedocs.org/projects/ray/badge/?version=master\n :target: http://docs.ray.io/en/master/?badge=master\n\n.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue\n :target: https://forms.gle/9TSdDYUgxYs8SA9e8\n\n.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue\n :target: https://discuss.ray.io/\n\n.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter\n :target: https://twitter.com/raydistributed\n\n.. image:: https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D\n :target: https://www.anyscale.com/ray-on-anyscale?utm_source=github&utm_medium=ray_readme&utm_campaign=get_started_badge\n\nRay is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:\n\n.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg\n\n..\n https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit\n\nLearn more about `Ray AI Libraries`_:\n\n- `Data`_: Scalable Datasets for ML\n- `Train`_: Distributed Training\n- `Tune`_: Scalable Hyperparameter Tuning\n- `RLlib`_: Scalable Reinforcement Learning\n- `Serve`_: Scalable and Programmable Serving\n\nOr more about `Ray Core`_ and its key abstractions:\n\n- `Tasks`_: Stateless functions executed in the cluster.\n- `Actors`_: Stateful worker processes created in the cluster.\n- `Objects`_: Immutable values accessible across the cluster.\n\nLearn more about Monitoring and Debugging:\n\n- Monitor Ray apps and clusters with the `Ray Dashboard <https://antgroup.github.io/ant-ray/ray-core/ray-dashboard.html>`__.\n- Debug Ray apps with the `Ray Distributed Debugger <https://antgroup.github.io/ant-ray/ray-observability/ray-distributed-debugger.html>`__.\n\nRay runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing\n`ecosystem of community integrations`_.\n\nInstall Ray with: ``pip install ray``. For nightly wheels, see the\n`Installation page <https://antgroup.github.io/ant-ray/ray-overview/installation.html>`__.\n\n**Note**: ``This documentation refers to Ant Ray - a fork of Ray maintained by Ant Group. To install this specific version, use``:\n\n.. code-block:: bash\n\n pip install ant-ray\n\n\n.. _`Serve`: https://antgroup.github.io/ant-ray/serve/index.html\n.. _`Data`: https://antgroup.github.io/ant-ray/data/dataset.html\n.. _`Workflow`: https://antgroup.github.io/ant-ray/workflows/concepts.html\n.. _`Train`: https://antgroup.github.io/ant-ray/train/train.html\n.. _`Tune`: https://antgroup.github.io/ant-ray/tune/index.html\n.. _`RLlib`: https://antgroup.github.io/ant-ray/rllib/index.html\n.. _`ecosystem of community integrations`: https://antgroup.github.io/ant-ray/ray-overview/ray-libraries.html\n\n\nWhy Ray?\n--------\n\nToday's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.\n\nRay is a unified way to scale Python and AI applications from a laptop to a cluster.\n\nWith Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.\n\nMore Information\n----------------\n\n- `Documentation`_\n- `Ray Architecture whitepaper`_\n- `Exoshuffle: large-scale data shuffle in Ray`_\n- `Ownership: a distributed futures system for fine-grained tasks`_\n- `RLlib paper`_\n- `Tune paper`_\n\n*Older documents:*\n\n- `Ray paper`_\n- `Ray HotOS paper`_\n- `Ray Architecture v1 whitepaper`_\n\n.. _`Ray AI Libraries`: https://antgroup.github.io/ant-ray/ray-air/getting-started.html\n.. _`Ray Core`: https://antgroup.github.io/ant-ray/ray-core/walkthrough.html\n.. _`Tasks`: https://antgroup.github.io/ant-ray/ray-core/tasks.html\n.. _`Actors`: https://antgroup.github.io/ant-ray/ray-core/actors.html\n.. _`Objects`: https://antgroup.github.io/ant-ray/ray-core/objects.html\n.. _`Documentation`: http://antgroup.github.io/ant-ray/index.html\n.. _`Ray Architecture v1 whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview\n.. _`Ray Architecture whitepaper`: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview\n.. _`Exoshuffle: large-scale data shuffle in Ray`: https://arxiv.org/abs/2203.05072\n.. _`Ownership: a distributed futures system for fine-grained tasks`: https://www.usenix.org/system/files/nsdi21-wang.pdf\n.. _`Ray paper`: https://arxiv.org/abs/1712.05889\n.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924\n.. _`RLlib paper`: https://arxiv.org/abs/1712.09381\n.. _`Tune paper`: https://arxiv.org/abs/1807.05118\n\nGetting Involved\n----------------\n\n.. list-table::\n :widths: 25 50 25 25\n :header-rows: 1\n\n * - Platform\n - Purpose\n - Estimated Response Time\n - Support Level\n * - `Discourse Forum`_\n - For discussions about development and questions about usage.\n - < 1 day\n - Community\n * - `GitHub Issues`_\n - For reporting bugs and filing feature requests.\n - < 2 days\n - Ray OSS Team\n * - `Slack`_\n - For collaborating with other Ray users.\n - < 2 days\n - Community\n * - `StackOverflow`_\n - For asking questions about how to use Ray.\n - 3-5 days\n - Community\n * - `Meetup Group`_\n - For learning about Ray projects and best practices.\n - Monthly\n - Ray DevRel\n * - `Twitter`_\n - For staying up-to-date on new features.\n - Daily\n - Ray DevRel\n\n.. _`Discourse Forum`: https://discuss.ray.io/\n.. _`GitHub Issues`: https://github.com/ray-project/ray/issues\n.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray\n.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/\n.. _`Twitter`: https://twitter.com/raydistributed\n.. _`Slack`: https://www.ray.io/join-slack?utm_source=github&utm_medium=ray_readme&utm_campaign=getting_involved\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Ray provides a simple, universal API for building distributed applications.",
"version": "2.42.2",
"project_urls": {
"Homepage": "https://github.com/ray-project/ray"
},
"split_keywords": [
"ray",
"distributed",
"parallel",
"machine-learning",
"hyperparameter-tuningreinforcement-learning",
"deep-learning",
"serving",
"python"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "b68ce6b77737b4114b392e33b477b88396648e97c864131ff9a7a7c216167654",
"md5": "9308bbb4cdad853a417d96251f5ca674",
"sha256": "5e592973e20ddae9af4569ca23350968fd35326c48f29133745ee00504049565"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp310-cp310-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "9308bbb4cdad853a417d96251f5ca674",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 35654138,
"upload_time": "2025-02-15T06:42:26",
"upload_time_iso_8601": "2025-02-15T06:42:26.023859Z",
"url": "https://files.pythonhosted.org/packages/b6/8c/e6b77737b4114b392e33b477b88396648e97c864131ff9a7a7c216167654/ant_ray-2.42.2-cp310-cp310-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "36a1e7b06d247cc5d1d8868f03b8edb01423acbba28de534210206041fa7fac3",
"md5": "7d2f1beb760945751279752b9606fab1",
"sha256": "905e3c5fe50301da2c5fa66204c248f660d6736386bbf746de8b01c23a37cff8"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp310-cp310-macosx_14_0_x86_64.whl",
"has_sig": false,
"md5_digest": "7d2f1beb760945751279752b9606fab1",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 37180067,
"upload_time": "2025-02-15T06:42:33",
"upload_time_iso_8601": "2025-02-15T06:42:33.572176Z",
"url": "https://files.pythonhosted.org/packages/36/a1/e7b06d247cc5d1d8868f03b8edb01423acbba28de534210206041fa7fac3/ant_ray-2.42.2-cp310-cp310-macosx_14_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a52da654fd39f893f972f289779a2cec563a310deac14db91d5ef4940ac7e706",
"md5": "4e28015dd3ec857ce7201fd0bc5ef302",
"sha256": "3df2e5df202935fc89cac6df676cea81eb621380f3ed3546d674b6221064c5a5"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "4e28015dd3ec857ce7201fd0bc5ef302",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 37036344,
"upload_time": "2025-02-15T06:42:41",
"upload_time_iso_8601": "2025-02-15T06:42:41.064872Z",
"url": "https://files.pythonhosted.org/packages/a5/2d/a654fd39f893f972f289779a2cec563a310deac14db91d5ef4940ac7e706/ant_ray-2.42.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "79f5059b213106a284de3a62763e8e55eb14fd0e9539dad82fac86293f7e738e",
"md5": "5baca0b754aad186e32641bf0eab6952",
"sha256": "f91c1682853221b4636fb8946c428a97a09933accf11f91258e0595f5cc4488b"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "5baca0b754aad186e32641bf0eab6952",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 37700448,
"upload_time": "2025-02-15T06:42:48",
"upload_time_iso_8601": "2025-02-15T06:42:48.291347Z",
"url": "https://files.pythonhosted.org/packages/79/f5/059b213106a284de3a62763e8e55eb14fd0e9539dad82fac86293f7e738e/ant_ray-2.42.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6a286248cbede49ce9c4bde549dde07ea0a22fe7aa03083adbd2c9646b471a02",
"md5": "65bfcaaee5ffbf93cc99a77fc5f50be4",
"sha256": "11873c4fe5be17ffa4c07b536ab7e06f5b7ac08e98e1e8dd4645d150e010522e"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp311-cp311-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "65bfcaaee5ffbf93cc99a77fc5f50be4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 35589951,
"upload_time": "2025-02-15T06:42:54",
"upload_time_iso_8601": "2025-02-15T06:42:54.991052Z",
"url": "https://files.pythonhosted.org/packages/6a/28/6248cbede49ce9c4bde549dde07ea0a22fe7aa03083adbd2c9646b471a02/ant_ray-2.42.2-cp311-cp311-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d0a899e3d644e1e64261bc5155f8589119707874a2b7d950fbb7b417b88aef67",
"md5": "4773fe23e5bdbac317d73706ffe3fd63",
"sha256": "8832bf034874afc0f300085592ed94251a28dbed9f628c1f71292a53f6ce90b0"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp311-cp311-macosx_14_0_x86_64.whl",
"has_sig": false,
"md5_digest": "4773fe23e5bdbac317d73706ffe3fd63",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 37120709,
"upload_time": "2025-02-15T06:43:01",
"upload_time_iso_8601": "2025-02-15T06:43:01.644148Z",
"url": "https://files.pythonhosted.org/packages/d0/a8/99e3d644e1e64261bc5155f8589119707874a2b7d950fbb7b417b88aef67/ant_ray-2.42.2-cp311-cp311-macosx_14_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d2852a2a7ba2ba429bfedf4dd0646be1853a110d1600a3758383504e31f594b4",
"md5": "4a52b89125b2c1b430d3851214a22d55",
"sha256": "74f91fb67b38fc050e8f39b558d27e0fd3e571e70afe827b69a879c112e0f925"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "4a52b89125b2c1b430d3851214a22d55",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 37175970,
"upload_time": "2025-02-15T06:43:08",
"upload_time_iso_8601": "2025-02-15T06:43:08.862650Z",
"url": "https://files.pythonhosted.org/packages/d2/85/2a2a7ba2ba429bfedf4dd0646be1853a110d1600a3758383504e31f594b4/ant_ray-2.42.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d04e7eb69963fc2275bda132142370a110441df013824009ea9ee07965334b31",
"md5": "57a8729b69ecca1d177b16a300dc2ecf",
"sha256": "c22da784f43292ce8cf0d7f1e89afefe50519a3100226905f36349fbf0ba684f"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "57a8729b69ecca1d177b16a300dc2ecf",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 37824036,
"upload_time": "2025-02-15T06:43:16",
"upload_time_iso_8601": "2025-02-15T06:43:16.615212Z",
"url": "https://files.pythonhosted.org/packages/d0/4e/7eb69963fc2275bda132142370a110441df013824009ea9ee07965334b31/ant_ray-2.42.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "839dfd05c4790bf70c77e8c65de4c6e06922c2fb64e06ecf282126f4c406606d",
"md5": "6406c7433812a85535381df7138a7922",
"sha256": "a562797bd63066fb4309dbb7217e5ae3a91583b6da5641816fba92876ab8ea9e"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp39-cp39-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "6406c7433812a85535381df7138a7922",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 35773510,
"upload_time": "2025-02-15T06:43:23",
"upload_time_iso_8601": "2025-02-15T06:43:23.586161Z",
"url": "https://files.pythonhosted.org/packages/83/9d/fd05c4790bf70c77e8c65de4c6e06922c2fb64e06ecf282126f4c406606d/ant_ray-2.42.2-cp39-cp39-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9a829e7ed2c850e5a15ce5d8c9ee829e6d9f7a0a807cc94316811d4a00582387",
"md5": "0851fc6f97aa9155c789ad41700609a6",
"sha256": "3bec18d91da7eca82901b7adfe7bb022772c252ecf0f320dd5f8389d4b8b2b5e"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp39-cp39-macosx_14_0_x86_64.whl",
"has_sig": false,
"md5_digest": "0851fc6f97aa9155c789ad41700609a6",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 37296649,
"upload_time": "2025-02-15T06:43:30",
"upload_time_iso_8601": "2025-02-15T06:43:30.396821Z",
"url": "https://files.pythonhosted.org/packages/9a/82/9e7ed2c850e5a15ce5d8c9ee829e6d9f7a0a807cc94316811d4a00582387/ant_ray-2.42.2-cp39-cp39-macosx_14_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8be742c215ec9a02fe4628067432bd6de9a5a40c47475d1f7203a58df3982614",
"md5": "1149906017f2949c9eb883e5b8668699",
"sha256": "4edb54ae39de656bcfcb2eecea989e5ea67f2e917aa5c445435b5c97af0d7e15"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "1149906017f2949c9eb883e5b8668699",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 37057377,
"upload_time": "2025-02-15T06:43:38",
"upload_time_iso_8601": "2025-02-15T06:43:38.004026Z",
"url": "https://files.pythonhosted.org/packages/8b/e7/42c215ec9a02fe4628067432bd6de9a5a40c47475d1f7203a58df3982614/ant_ray-2.42.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9a8cd6c15160f59e9efb988a3c527b7342e05eaa32b5ced553ac44e996be2ae2",
"md5": "d13e35314417faf63c61773ec3325fd7",
"sha256": "1aeb3a1d91568d8ef06cbd101840f8ef64e30e764f2282f832732cc6b92c6c02"
},
"downloads": -1,
"filename": "ant_ray-2.42.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "d13e35314417faf63c61773ec3325fd7",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 37718920,
"upload_time": "2025-02-15T06:43:44",
"upload_time_iso_8601": "2025-02-15T06:43:44.894507Z",
"url": "https://files.pythonhosted.org/packages/9a/8c/d6c15160f59e9efb988a3c527b7342e05eaa32b5ced553ac44e996be2ae2/ant_ray-2.42.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-15 06:42:26",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ray-project",
"github_project": "ray",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "ant-ray"
}