Name | Version | Summary | date |
ray-nightly |
3.0.0.dev20241219 |
Ray provides a simple, universal API for building distributed applications. |
2024-12-19 14:00:26 |
ray-cpp |
2.40.0 |
A subpackage of Ray which provides the Ray C++ API. |
2024-12-03 23:47:52 |
ray |
2.40.0 |
Ray provides a simple, universal API for building distributed applications. |
2024-12-03 23:45:31 |
deepfos-celery |
1.1.20 |
Distributed Task Queue. |
2024-12-02 07:18:54 |
cluster-pack |
0.3.10 |
A library on top of either pex or conda-packto make your Python code easily available on a cluster |
2024-11-27 16:34:14 |
raydp-nightly |
2024.11.22.dev0 |
RayDP: Distributed Data Processing on Ray |
2024-11-22 01:08:19 |
ipwb |
0.2024.10.24.1853 |
InterPlanetary Wayback (ipwb): Web Archive integration with IPFS |
2024-10-24 18:54:40 |
dask-saturn |
0.4.4 |
Dask Cluster objects in Saturn Cloud |
2024-10-17 20:31:19 |
cyberx |
0.3.1 |
Distributed Heterogeneous Computing Framework |
2024-09-26 06:17:15 |
fugue-sql-antlr-cpp |
0.2.2 |
Fugue SQL Antlr C++ Parser |
2024-08-15 07:36:18 |
fugue-sql-antlr |
0.2.2 |
Fugue SQL Antlr Parser |
2024-08-15 07:25:57 |
open-fleet |
0.0.7 |
distributed task distribution framework |
2024-08-09 12:31:36 |
GInvDist |
0.1.5 |
проект GInvDist - система для распределённого вычисления базисов Грёбнера(и инволютивных базисов) с использованием инволютивного деления. |
2024-07-29 09:49:14 |
scattermind |
0.5.0 |
A decentralized and distributed horizontally scalable model execution framework. |
2024-06-27 19:41:55 |
raydp |
1.6.1 |
RayDP: Distributed Data Processing on Ray |
2024-06-26 07:38:48 |
fugue |
0.9.1 |
An abstraction layer for distributed computation |
2024-06-14 17:03:44 |
Kuyruk |
10.1.0 |
Simple task queue |
2024-06-06 14:36:08 |
deepgpu |
2.1.0.post1 |
DEEPGPU is a toolset for AI training acceleration on Alibaba Cloud. |
2024-06-04 02:01:37 |
longsight |
1.0.15 |
This library implements a range of common logging functions. |
2024-05-21 10:39:55 |
deepnccl |
2.1.0 |
DEEP-NCCL is an AI-Accelerator communication framework for NVIDIA-NCCL. It implements optimized all-reduce, all-gather, reduce, broadcast, reduce-scatter, all-to-all,as well as any send/receive based communication pattern.It has been optimized to achieve high bandwidth on aliyun machines using PCIe, NVLink, NVswitch,as well as networking using InfiniBand Verbs, eRDMA or TCP/IP sockets. |
2024-05-14 09:33:26 |