.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
.. image:: https://readthedocs.org/projects/ray/badge/?version=master
:target: http://docs.ray.io/en/master/?badge=master
.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue
:target: https://www.ray.io/join-slack
.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue
:target: https://discuss.ray.io/
.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter
:target: https://twitter.com/raydistributed
.. image:: https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D
:target: https://www.anyscale.com/ray-on-anyscale?utm_source=github&utm_medium=ray_readme&utm_campaign=get_started_badge
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg
..
https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit
Learn more about `Ray AI Libraries`_:
- `Data`_: Scalable Datasets for ML
- `Train`_: Distributed Training
- `Tune`_: Scalable Hyperparameter Tuning
- `RLlib`_: Scalable Reinforcement Learning
- `Serve`_: Scalable and Programmable Serving
Or more about `Ray Core`_ and its key abstractions:
- `Tasks`_: Stateless functions executed in the cluster.
- `Actors`_: Stateful worker processes created in the cluster.
- `Objects`_: Immutable values accessible across the cluster.
Learn more about Monitoring and Debugging:
- Monitor Ray apps and clusters with the `Ray Dashboard <https://antgroup.github.io/ant-ray/ray-core/ray-dashboard.html>`__.
- Debug Ray apps with the `Ray Distributed Debugger <https://antgroup.github.io/ant-ray/ray-observability/ray-distributed-debugger.html>`__.
Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing
`ecosystem of community integrations`_.
Install Ray with: ``pip install ray``. For nightly wheels, see the
`Installation page <https://antgroup.github.io/ant-ray/ray-overview/installation.html>`__.
**Note**: ``This documentation refers to Ant Ray - a fork of Ray maintained by Ant Group. To install this specific version, use``:
.. code-block:: bash
pip install ant-ray
.. _`Serve`: https://antgroup.github.io/ant-ray/serve/index.html
.. _`Data`: https://antgroup.github.io/ant-ray/data/dataset.html
.. _`Workflow`: https://antgroup.github.io/ant-ray/workflows/concepts.html
.. _`Train`: https://antgroup.github.io/ant-ray/train/train.html
.. _`Tune`: https://antgroup.github.io/ant-ray/tune/index.html
.. _`RLlib`: https://antgroup.github.io/ant-ray/rllib/index.html
.. _`ecosystem of community integrations`: https://antgroup.github.io/ant-ray/ray-overview/ray-libraries.html
Why Ray?
--------
Today's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.
Ray is a unified way to scale Python and AI applications from a laptop to a cluster.
With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.
More Information
----------------
- `Documentation`_
- `Ray Architecture whitepaper`_
- `Exoshuffle: large-scale data shuffle in Ray`_
- `Ownership: a distributed futures system for fine-grained tasks`_
- `RLlib paper`_
- `Tune paper`_
*Older documents:*
- `Ray paper`_
- `Ray HotOS paper`_
- `Ray Architecture v1 whitepaper`_
.. _`Ray AI Libraries`: https://antgroup.github.io/ant-ray/ray-air/getting-started.html
.. _`Ray Core`: https://antgroup.github.io/ant-ray/ray-core/walkthrough.html
.. _`Tasks`: https://antgroup.github.io/ant-ray/ray-core/tasks.html
.. _`Actors`: https://antgroup.github.io/ant-ray/ray-core/actors.html
.. _`Objects`: https://antgroup.github.io/ant-ray/ray-core/objects.html
.. _`Documentation`: http://antgroup.github.io/ant-ray/index.html
.. _`Ray Architecture v1 whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
.. _`Ray Architecture whitepaper`: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview
.. _`Exoshuffle: large-scale data shuffle in Ray`: https://arxiv.org/abs/2203.05072
.. _`Ownership: a distributed futures system for fine-grained tasks`: https://www.usenix.org/system/files/nsdi21-wang.pdf
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
Getting Involved
----------------
.. list-table::
:widths: 25 50 25 25
:header-rows: 1
* - Platform
- Purpose
- Estimated Response Time
- Support Level
* - `Discourse Forum`_
- For discussions about development and questions about usage.
- < 1 day
- Community
* - `GitHub Issues`_
- For reporting bugs and filing feature requests.
- < 2 days
- Ray OSS Team
* - `Slack`_
- For collaborating with other Ray users.
- < 2 days
- Community
* - `StackOverflow`_
- For asking questions about how to use Ray.
- 3-5 days
- Community
* - `Meetup Group`_
- For learning about Ray projects and best practices.
- Monthly
- Ray DevRel
* - `Twitter`_
- For staying up-to-date on new features.
- Daily
- Ray DevRel
.. _`Discourse Forum`: https://discuss.ray.io/
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/
.. _`Twitter`: https://twitter.com/raydistributed
.. _`Slack`: https://www.ray.io/join-slack?utm_source=github&utm_medium=ray_readme&utm_campaign=getting_involved
Raw data
{
"_id": null,
"home_page": "https://github.com/ray-project/ray",
"name": "ant-ray-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "ray distributed parallel machine-learning hyperparameter-tuningreinforcement-learning deep-learning serving python",
"author": "Ray Team",
"author_email": "ray-dev@googlegroups.com",
"download_url": null,
"platform": null,
"description": ".. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png\n\n.. image:: https://readthedocs.org/projects/ray/badge/?version=master\n :target: http://docs.ray.io/en/master/?badge=master\n\n.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue\n :target: https://www.ray.io/join-slack\n\n.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue\n :target: https://discuss.ray.io/\n\n.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter\n :target: https://twitter.com/raydistributed\n\n.. image:: https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D\n :target: https://www.anyscale.com/ray-on-anyscale?utm_source=github&utm_medium=ray_readme&utm_campaign=get_started_badge\n\nRay is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:\n\n.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg\n\n..\n https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit\n\nLearn more about `Ray AI Libraries`_:\n\n- `Data`_: Scalable Datasets for ML\n- `Train`_: Distributed Training\n- `Tune`_: Scalable Hyperparameter Tuning\n- `RLlib`_: Scalable Reinforcement Learning\n- `Serve`_: Scalable and Programmable Serving\n\nOr more about `Ray Core`_ and its key abstractions:\n\n- `Tasks`_: Stateless functions executed in the cluster.\n- `Actors`_: Stateful worker processes created in the cluster.\n- `Objects`_: Immutable values accessible across the cluster.\n\nLearn more about Monitoring and Debugging:\n\n- Monitor Ray apps and clusters with the `Ray Dashboard <https://antgroup.github.io/ant-ray/ray-core/ray-dashboard.html>`__.\n- Debug Ray apps with the `Ray Distributed Debugger <https://antgroup.github.io/ant-ray/ray-observability/ray-distributed-debugger.html>`__.\n\nRay runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing\n`ecosystem of community integrations`_.\n\nInstall Ray with: ``pip install ray``. For nightly wheels, see the\n`Installation page <https://antgroup.github.io/ant-ray/ray-overview/installation.html>`__.\n\n**Note**: ``This documentation refers to Ant Ray - a fork of Ray maintained by Ant Group. To install this specific version, use``:\n\n.. code-block:: bash\n\n pip install ant-ray\n\n\n.. _`Serve`: https://antgroup.github.io/ant-ray/serve/index.html\n.. _`Data`: https://antgroup.github.io/ant-ray/data/dataset.html\n.. _`Workflow`: https://antgroup.github.io/ant-ray/workflows/concepts.html\n.. _`Train`: https://antgroup.github.io/ant-ray/train/train.html\n.. _`Tune`: https://antgroup.github.io/ant-ray/tune/index.html\n.. _`RLlib`: https://antgroup.github.io/ant-ray/rllib/index.html\n.. _`ecosystem of community integrations`: https://antgroup.github.io/ant-ray/ray-overview/ray-libraries.html\n\n\nWhy Ray?\n--------\n\nToday's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.\n\nRay is a unified way to scale Python and AI applications from a laptop to a cluster.\n\nWith Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.\n\nMore Information\n----------------\n\n- `Documentation`_\n- `Ray Architecture whitepaper`_\n- `Exoshuffle: large-scale data shuffle in Ray`_\n- `Ownership: a distributed futures system for fine-grained tasks`_\n- `RLlib paper`_\n- `Tune paper`_\n\n*Older documents:*\n\n- `Ray paper`_\n- `Ray HotOS paper`_\n- `Ray Architecture v1 whitepaper`_\n\n.. _`Ray AI Libraries`: https://antgroup.github.io/ant-ray/ray-air/getting-started.html\n.. _`Ray Core`: https://antgroup.github.io/ant-ray/ray-core/walkthrough.html\n.. _`Tasks`: https://antgroup.github.io/ant-ray/ray-core/tasks.html\n.. _`Actors`: https://antgroup.github.io/ant-ray/ray-core/actors.html\n.. _`Objects`: https://antgroup.github.io/ant-ray/ray-core/objects.html\n.. _`Documentation`: http://antgroup.github.io/ant-ray/index.html\n.. _`Ray Architecture v1 whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview\n.. _`Ray Architecture whitepaper`: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview\n.. _`Exoshuffle: large-scale data shuffle in Ray`: https://arxiv.org/abs/2203.05072\n.. _`Ownership: a distributed futures system for fine-grained tasks`: https://www.usenix.org/system/files/nsdi21-wang.pdf\n.. _`Ray paper`: https://arxiv.org/abs/1712.05889\n.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924\n.. _`RLlib paper`: https://arxiv.org/abs/1712.09381\n.. _`Tune paper`: https://arxiv.org/abs/1807.05118\n\nGetting Involved\n----------------\n\n.. list-table::\n :widths: 25 50 25 25\n :header-rows: 1\n\n * - Platform\n - Purpose\n - Estimated Response Time\n - Support Level\n * - `Discourse Forum`_\n - For discussions about development and questions about usage.\n - < 1 day\n - Community\n * - `GitHub Issues`_\n - For reporting bugs and filing feature requests.\n - < 2 days\n - Ray OSS Team\n * - `Slack`_\n - For collaborating with other Ray users.\n - < 2 days\n - Community\n * - `StackOverflow`_\n - For asking questions about how to use Ray.\n - 3-5 days\n - Community\n * - `Meetup Group`_\n - For learning about Ray projects and best practices.\n - Monthly\n - Ray DevRel\n * - `Twitter`_\n - For staying up-to-date on new features.\n - Daily\n - Ray DevRel\n\n.. _`Discourse Forum`: https://discuss.ray.io/\n.. _`GitHub Issues`: https://github.com/ray-project/ray/issues\n.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray\n.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/\n.. _`Twitter`: https://twitter.com/raydistributed\n.. _`Slack`: https://www.ray.io/join-slack?utm_source=github&utm_medium=ray_readme&utm_campaign=getting_involved\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Ray provides a simple, universal API for building distributed applications.",
"version": "2.44.1.post0",
"project_urls": {
"Homepage": "https://github.com/ray-project/ray"
},
"split_keywords": [
"ray",
"distributed",
"parallel",
"machine-learning",
"hyperparameter-tuningreinforcement-learning",
"deep-learning",
"serving",
"python"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "64b99e26f17cb787dd00e623245ca39860234047aeac5e3c7e4aa345794ce15d",
"md5": "639c77933c6f899e691bd7669150cabc",
"sha256": "95e14d011d4578d4d80d1b493643a890143033d41bb3bc1ccdeac24edd7027a0"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp310-cp310-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "639c77933c6f899e691bd7669150cabc",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 36917358,
"upload_time": "2025-04-01T11:18:13",
"upload_time_iso_8601": "2025-04-01T11:18:13.321798Z",
"url": "https://files.pythonhosted.org/packages/64/b9/9e26f17cb787dd00e623245ca39860234047aeac5e3c7e4aa345794ce15d/ant_ray_nightly-2.44.1.post0-cp310-cp310-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "34d22c0d32bb724b9b1e0b85ac9319623f10042b739b79be04f77b3276a33702",
"md5": "4daaa3d1574657a39c6bbfbf9993dbb1",
"sha256": "a3baee7da10577741da45b7d043ba38d31feb6d30661fe1023afdfe52351f5ec"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp310-cp310-macosx_14_0_x86_64.whl",
"has_sig": false,
"md5_digest": "4daaa3d1574657a39c6bbfbf9993dbb1",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 38486209,
"upload_time": "2025-04-01T11:18:18",
"upload_time_iso_8601": "2025-04-01T11:18:18.312350Z",
"url": "https://files.pythonhosted.org/packages/34/d2/2c0d32bb724b9b1e0b85ac9319623f10042b739b79be04f77b3276a33702/ant_ray_nightly-2.44.1.post0-cp310-cp310-macosx_14_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "25abd34513276b001e1604a0d64ec0d81703ff8adfbc78c903867bfc941f07fb",
"md5": "75c41106bd9e02151e1c433edb67d489",
"sha256": "43298a53060fd04cd9b4a9c0159f8ef70d4239859a2eecdcc6801e41fcae6bf3"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "75c41106bd9e02151e1c433edb67d489",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 38490458,
"upload_time": "2025-04-01T11:18:21",
"upload_time_iso_8601": "2025-04-01T11:18:21.945326Z",
"url": "https://files.pythonhosted.org/packages/25/ab/d34513276b001e1604a0d64ec0d81703ff8adfbc78c903867bfc941f07fb/ant_ray_nightly-2.44.1.post0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c303e697f876e094d6951e6537c53ec5b957018db362ee329720a537fd95378b",
"md5": "31a20bf3ab7aa08c1dcbc7981e062379",
"sha256": "48f89be0825eb3245a8a40b21a6719f36397066e16eae90d2a776cc5c896a82c"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "31a20bf3ab7aa08c1dcbc7981e062379",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 39169805,
"upload_time": "2025-04-01T11:18:25",
"upload_time_iso_8601": "2025-04-01T11:18:25.711283Z",
"url": "https://files.pythonhosted.org/packages/c3/03/e697f876e094d6951e6537c53ec5b957018db362ee329720a537fd95378b/ant_ray_nightly-2.44.1.post0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c2b18ecddf823bb1f31f3c8ac33ef447c7ce2a1691fefcb93492db9d4b0edd3a",
"md5": "913dcba8fbfa7fafbc592c078a3ee398",
"sha256": "59ce791935d4fd419e516b35e11dda33bad2bf3f0de063af85327316183843e7"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp311-cp311-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "913dcba8fbfa7fafbc592c078a3ee398",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 36884286,
"upload_time": "2025-04-01T11:18:30",
"upload_time_iso_8601": "2025-04-01T11:18:30.019281Z",
"url": "https://files.pythonhosted.org/packages/c2/b1/8ecddf823bb1f31f3c8ac33ef447c7ce2a1691fefcb93492db9d4b0edd3a/ant_ray_nightly-2.44.1.post0-cp311-cp311-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "76fefa0bb6ac033a2391a578560be40fd6837158c756871f270047c4521a1f73",
"md5": "5ea96461caeed704e010d3e180eed418",
"sha256": "5c2afa9015f9ec35a07cd47032e40b45cf5b4a28636d85574e4a7c2d71c7b962"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp311-cp311-macosx_14_0_x86_64.whl",
"has_sig": false,
"md5_digest": "5ea96461caeed704e010d3e180eed418",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 38446414,
"upload_time": "2025-04-01T11:18:34",
"upload_time_iso_8601": "2025-04-01T11:18:34.559936Z",
"url": "https://files.pythonhosted.org/packages/76/fe/fa0bb6ac033a2391a578560be40fd6837158c756871f270047c4521a1f73/ant_ray_nightly-2.44.1.post0-cp311-cp311-macosx_14_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "73f14b94e6dacffdb15eb15348b40d9c4c0965157579c85ed545954ec0851d5c",
"md5": "f73b932b42a131411d084e985df4cec9",
"sha256": "021a02e85c556beeb7f0a56d3b52e60c63d86001dd7ad63567ec0ceda40c9877"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "f73b932b42a131411d084e985df4cec9",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 38630822,
"upload_time": "2025-04-01T11:18:37",
"upload_time_iso_8601": "2025-04-01T11:18:37.939270Z",
"url": "https://files.pythonhosted.org/packages/73/f1/4b94e6dacffdb15eb15348b40d9c4c0965157579c85ed545954ec0851d5c/ant_ray_nightly-2.44.1.post0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "78947bfaaed42c921ba38cbe66a045d660f42d41dcede4f88394018a484dbe90",
"md5": "632ba85b92a99a24df8e777a2640d1e5",
"sha256": "fbbd323a60b4c9bd94d26f3c4d0cef69fec56cccd4e844012445463b1067ae3c"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "632ba85b92a99a24df8e777a2640d1e5",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 39288556,
"upload_time": "2025-04-01T11:18:41",
"upload_time_iso_8601": "2025-04-01T11:18:41.561797Z",
"url": "https://files.pythonhosted.org/packages/78/94/7bfaaed42c921ba38cbe66a045d660f42d41dcede4f88394018a484dbe90/ant_ray_nightly-2.44.1.post0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1ed86b26d63342832cb63ac4f365b758656e65414471eefe84655de406080187",
"md5": "2e77d73197e6d5ad58f5fa146e6b4ffe",
"sha256": "d91f14e97dde4cc759b3fa7be3109481e1dfa38e06b1bb4dc0b6682d0fb0c0a2"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp39-cp39-macosx_14_0_arm64.whl",
"has_sig": false,
"md5_digest": "2e77d73197e6d5ad58f5fa146e6b4ffe",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 37155860,
"upload_time": "2025-04-01T11:18:44",
"upload_time_iso_8601": "2025-04-01T11:18:44.735862Z",
"url": "https://files.pythonhosted.org/packages/1e/d8/6b26d63342832cb63ac4f365b758656e65414471eefe84655de406080187/ant_ray_nightly-2.44.1.post0-cp39-cp39-macosx_14_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "50580143001e5693bc1d8d88e47980743c5f09323f91986fa365e3ae7a04073a",
"md5": "ce4df9169ecfd222109fd9fbce86d587",
"sha256": "78f289dc360b6f38522b78636d9a2a19cbeb7094c39f0ab74282a8243aa2164c"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp39-cp39-macosx_14_0_x86_64.whl",
"has_sig": false,
"md5_digest": "ce4df9169ecfd222109fd9fbce86d587",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 38724645,
"upload_time": "2025-04-01T11:18:48",
"upload_time_iso_8601": "2025-04-01T11:18:48.155746Z",
"url": "https://files.pythonhosted.org/packages/50/58/0143001e5693bc1d8d88e47980743c5f09323f91986fa365e3ae7a04073a/ant_ray_nightly-2.44.1.post0-cp39-cp39-macosx_14_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3bb438ca5e31301359c46349c9a1106b359f1ae3cd88cd8eb9cb44add6790478",
"md5": "60a7b4700b169c85e6817e524abc3f44",
"sha256": "66dbbdbef6be757ab03ea992fefd6f0a4095c7c51415b460aead45c8dbcbcf93"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "60a7b4700b169c85e6817e524abc3f44",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 38505208,
"upload_time": "2025-04-01T11:18:51",
"upload_time_iso_8601": "2025-04-01T11:18:51.343208Z",
"url": "https://files.pythonhosted.org/packages/3b/b4/38ca5e31301359c46349c9a1106b359f1ae3cd88cd8eb9cb44add6790478/ant_ray_nightly-2.44.1.post0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "449fc426696a1292f209d5b1b730b54cc86f7a7ee0e5978124ed1a22afe97322",
"md5": "8ca16c7bb2c9e8af3b5bcf0040da8554",
"sha256": "d0d8d638b9543cf6a73404219d776ba16c28f3f65757f7aa9da67071b8e3d8ea"
},
"downloads": -1,
"filename": "ant_ray_nightly-2.44.1.post0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "8ca16c7bb2c9e8af3b5bcf0040da8554",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 39182553,
"upload_time": "2025-04-01T11:18:56",
"upload_time_iso_8601": "2025-04-01T11:18:56.035904Z",
"url": "https://files.pythonhosted.org/packages/44/9f/c426696a1292f209d5b1b730b54cc86f7a7ee0e5978124ed1a22afe97322/ant_ray_nightly-2.44.1.post0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-04-01 11:18:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ray-project",
"github_project": "ray",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "ant-ray-nightly"
}