arviz


Namearviz JSON
Version 0.20.0 PyPI version JSON
download
home_pagehttp://github.com/arviz-devs/arviz
SummaryExploratory analysis of Bayesian models
upload_time2024-09-28 20:50:30
maintainerNone
docs_urlNone
authorArviZ Developers
requires_python>=3.10
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements setuptools matplotlib numpy scipy packaging pandas xarray h5netcdf typing_extensions xarray-einstats
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img src="https://raw.githubusercontent.com/arviz-devs/arviz-project/main/arviz_logos/ArviZ.png#gh-light-mode-only" width=200></img>
<img src="https://raw.githubusercontent.com/arviz-devs/arviz-project/main/arviz_logos/ArviZ_white.png#gh-dark-mode-only" width=200></img>

[![PyPI version](https://badge.fury.io/py/arviz.svg)](https://badge.fury.io/py/arviz)
[![Azure Build Status](https://dev.azure.com/ArviZ/ArviZ/_apis/build/status/arviz-devs.arviz?branchName=main)](https://dev.azure.com/ArviZ/ArviZ/_build/latest?definitionId=1&branchName=main)
[![codecov](https://codecov.io/gh/arviz-devs/arviz/branch/main/graph/badge.svg)](https://codecov.io/gh/arviz-devs/arviz)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)
[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/arviz-devs/community)
[![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2540945.svg)](https://doi.org/10.5281/zenodo.2540945)
[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)

ArviZ (pronounced "AR-_vees_") is a Python package for exploratory analysis of Bayesian models. It includes functions for posterior analysis, data storage, model checking, comparison and diagnostics.

### ArviZ in other languages
ArviZ also has a Julia wrapper available [ArviZ.jl](https://julia.arviz.org/).

## Documentation

The ArviZ documentation can be found in the [official docs](https://python.arviz.org/en/latest/index.html).
First time users may find the [quickstart](https://python.arviz.org/en/latest/getting_started/Introduction.html)
to be helpful. Additional guidance can be found in the
[user guide](https://python.arviz.org/en/latest/user_guide/index.html).


## Installation

### Stable
ArviZ is available for installation from [PyPI](https://pypi.org/project/arviz/).
The latest stable version can be installed using pip:

```
pip install arviz
```

ArviZ is also available through [conda-forge](https://anaconda.org/conda-forge/arviz).

```
conda install -c conda-forge arviz
```

### Development
The latest development version can be installed from the main branch using pip:

```
pip install git+git://github.com/arviz-devs/arviz.git
```

Another option is to clone the repository and install using git and setuptools:

```
git clone https://github.com/arviz-devs/arviz.git
cd arviz
python setup.py install
```

-------------------------------------------------------------------------------
## [Gallery](https://python.arviz.org/en/latest/examples/index.html)

<p>
<table>
<tr>

  <td>
  <a href= "https://python.arviz.org/en/latest/examples/plot_forest_ridge.html">
  <img alt="Ridge plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_forest_ridge.png" width="300" height="auto" />
  </a>
  </td>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_forest.html">
  <img alt="Forest Plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_forest.png" width="300" height="auto" />
  </a>
  </td>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_violin.html">
  <img alt="Violin Plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_violin.png" width="300" height="auto" />
  </a>
  </td>

</tr>
<tr>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_ppc.html">
  <img alt="Posterior predictive plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_ppc.png" width="300" height="auto" />
  </a>
  </td>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_dot.html">
  <img alt="Joint plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_dot.png" width="300" height="auto" />
  </a>
  </td>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_posterior.html">
  <img alt="Posterior plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_posterior.png" width="300" height="auto" />
  </a>
  </td>

</tr>
<tr>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_density.html">
  <img alt="Density plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_density.png" width="300" height="auto" />
  </a>
  </td>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_pair.html">
  <img alt="Pair plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_pair.png" width="300" height="auto" />
  </a>
  </td>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_pair_hex.html">
  <img alt="Hexbin Pair plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_pair_hex.png" width="300" height="auto" />
  </a>
  </td>

</tr>
<tr>
  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_trace.html">
  <img alt="Trace plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_trace.png" width="300" height="auto" />
  </a>
  </td>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_energy.html">
  <img alt="Energy Plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_energy.png" width="300" height="auto" />
  </a>
  </td>

  <td>
  <a href="https://python.arviz.org/en/latest/examples/plot_rank.html">
  <img alt="Rank Plot"
  src="https://python.arviz.org/en/latest/_images/mpl_plot_rank.png" width="300" height="auto" />
  </a>
  </td>

</tr>
</table>
<div>

  <a href="https://python.arviz.org/en/latest/examples/index.html">And more...</a>
</div>

## Dependencies

ArviZ is tested on Python 3.10, 3.11 and 3.12, and depends on NumPy, SciPy, xarray, and Matplotlib.


## Citation


If you use ArviZ and want to cite it please use [![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143)

Here is the citation in BibTeX format

```
@article{arviz_2019,
  doi = {10.21105/joss.01143},
  url = {https://doi.org/10.21105/joss.01143},
  year = {2019},
  publisher = {The Open Journal},
  volume = {4},
  number = {33},
  pages = {1143},
  author = {Ravin Kumar and Colin Carroll and Ari Hartikainen and Osvaldo Martin},
  title = {ArviZ a unified library for exploratory analysis of Bayesian models in Python},
  journal = {Journal of Open Source Software}
}
```


## Contributions
ArviZ is a community project and welcomes contributions.
Additional information can be found in the [Contributing Readme](https://github.com/arviz-devs/arviz/blob/main/CONTRIBUTING.md)


## Code of Conduct
ArviZ wishes to maintain a positive community. Additional details
can be found in the [Code of Conduct](https://github.com/arviz-devs/arviz/blob/main/CODE_OF_CONDUCT.md)

## Donations
ArviZ is a non-profit project under NumFOCUS umbrella. If you want to support ArviZ financially, you can donate [here](https://numfocus.org/donate-to-arviz).

## Sponsors
[![NumFOCUS](https://www.numfocus.org/wp-content/uploads/2017/07/NumFocus_LRG.png)](https://numfocus.org)

            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/arviz-devs/arviz",
    "name": "arviz",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "ArviZ Developers",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/35/4f/a815269ea59566910f2f31d83ebc135e4ba72989d8c51fc2e5ce06f78e2a/arviz-0.20.0.tar.gz",
    "platform": null,
    "description": "<img src=\"https://raw.githubusercontent.com/arviz-devs/arviz-project/main/arviz_logos/ArviZ.png#gh-light-mode-only\" width=200></img>\n<img src=\"https://raw.githubusercontent.com/arviz-devs/arviz-project/main/arviz_logos/ArviZ_white.png#gh-dark-mode-only\" width=200></img>\n\n[![PyPI version](https://badge.fury.io/py/arviz.svg)](https://badge.fury.io/py/arviz)\n[![Azure Build Status](https://dev.azure.com/ArviZ/ArviZ/_apis/build/status/arviz-devs.arviz?branchName=main)](https://dev.azure.com/ArviZ/ArviZ/_build/latest?definitionId=1&branchName=main)\n[![codecov](https://codecov.io/gh/arviz-devs/arviz/branch/main/graph/badge.svg)](https://codecov.io/gh/arviz-devs/arviz)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)\n[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/arviz-devs/community)\n[![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2540945.svg)](https://doi.org/10.5281/zenodo.2540945)\n[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)\n\nArviZ (pronounced \"AR-_vees_\") is a Python package for exploratory analysis of Bayesian models. It includes functions for posterior analysis, data storage, model checking, comparison and diagnostics.\n\n### ArviZ in other languages\nArviZ also has a Julia wrapper available [ArviZ.jl](https://julia.arviz.org/).\n\n## Documentation\n\nThe ArviZ documentation can be found in the [official docs](https://python.arviz.org/en/latest/index.html).\nFirst time users may find the [quickstart](https://python.arviz.org/en/latest/getting_started/Introduction.html)\nto be helpful. Additional guidance can be found in the\n[user guide](https://python.arviz.org/en/latest/user_guide/index.html).\n\n\n## Installation\n\n### Stable\nArviZ is available for installation from [PyPI](https://pypi.org/project/arviz/).\nThe latest stable version can be installed using pip:\n\n```\npip install arviz\n```\n\nArviZ is also available through [conda-forge](https://anaconda.org/conda-forge/arviz).\n\n```\nconda install -c conda-forge arviz\n```\n\n### Development\nThe latest development version can be installed from the main branch using pip:\n\n```\npip install git+git://github.com/arviz-devs/arviz.git\n```\n\nAnother option is to clone the repository and install using git and setuptools:\n\n```\ngit clone https://github.com/arviz-devs/arviz.git\ncd arviz\npython setup.py install\n```\n\n-------------------------------------------------------------------------------\n## [Gallery](https://python.arviz.org/en/latest/examples/index.html)\n\n<p>\n<table>\n<tr>\n\n  <td>\n  <a href= \"https://python.arviz.org/en/latest/examples/plot_forest_ridge.html\">\n  <img alt=\"Ridge plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_forest_ridge.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_forest.html\">\n  <img alt=\"Forest Plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_forest.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_violin.html\">\n  <img alt=\"Violin Plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_violin.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n</tr>\n<tr>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_ppc.html\">\n  <img alt=\"Posterior predictive plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_ppc.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_dot.html\">\n  <img alt=\"Joint plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_dot.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_posterior.html\">\n  <img alt=\"Posterior plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_posterior.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n</tr>\n<tr>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_density.html\">\n  <img alt=\"Density plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_density.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_pair.html\">\n  <img alt=\"Pair plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_pair.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_pair_hex.html\">\n  <img alt=\"Hexbin Pair plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_pair_hex.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n</tr>\n<tr>\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_trace.html\">\n  <img alt=\"Trace plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_trace.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_energy.html\">\n  <img alt=\"Energy Plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_energy.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n  <td>\n  <a href=\"https://python.arviz.org/en/latest/examples/plot_rank.html\">\n  <img alt=\"Rank Plot\"\n  src=\"https://python.arviz.org/en/latest/_images/mpl_plot_rank.png\" width=\"300\" height=\"auto\" />\n  </a>\n  </td>\n\n</tr>\n</table>\n<div>\n\n  <a href=\"https://python.arviz.org/en/latest/examples/index.html\">And more...</a>\n</div>\n\n## Dependencies\n\nArviZ is tested on Python 3.10, 3.11 and 3.12, and depends on NumPy, SciPy, xarray, and Matplotlib.\n\n\n## Citation\n\n\nIf you use ArviZ and want to cite it please use [![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143)\n\nHere is the citation in BibTeX format\n\n```\n@article{arviz_2019,\n  doi = {10.21105/joss.01143},\n  url = {https://doi.org/10.21105/joss.01143},\n  year = {2019},\n  publisher = {The Open Journal},\n  volume = {4},\n  number = {33},\n  pages = {1143},\n  author = {Ravin Kumar and Colin Carroll and Ari Hartikainen and Osvaldo Martin},\n  title = {ArviZ a unified library for exploratory analysis of Bayesian models in Python},\n  journal = {Journal of Open Source Software}\n}\n```\n\n\n## Contributions\nArviZ is a community project and welcomes contributions.\nAdditional information can be found in the [Contributing Readme](https://github.com/arviz-devs/arviz/blob/main/CONTRIBUTING.md)\n\n\n## Code of Conduct\nArviZ wishes to maintain a positive community. Additional details\ncan be found in the [Code of Conduct](https://github.com/arviz-devs/arviz/blob/main/CODE_OF_CONDUCT.md)\n\n## Donations\nArviZ is a non-profit project under NumFOCUS umbrella. If you want to support ArviZ financially, you can donate [here](https://numfocus.org/donate-to-arviz).\n\n## Sponsors\n[![NumFOCUS](https://www.numfocus.org/wp-content/uploads/2017/07/NumFocus_LRG.png)](https://numfocus.org)\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Exploratory analysis of Bayesian models",
    "version": "0.20.0",
    "project_urls": {
        "Homepage": "http://github.com/arviz-devs/arviz"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "86e874277b973ecc46d7c30660de441ca4eb3e9e0cc73b9b5e19e85f02ef4952",
                "md5": "e2b8588a1d649de576863609b8cb59a5",
                "sha256": "5ec4f2ec180a8305ff3d1108c29e189944ab939663eb5bc3231ff199a1a5dc36"
            },
            "downloads": -1,
            "filename": "arviz-0.20.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e2b8588a1d649de576863609b8cb59a5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 1665670,
            "upload_time": "2024-09-28T20:50:27",
            "upload_time_iso_8601": "2024-09-28T20:50:27.683179Z",
            "url": "https://files.pythonhosted.org/packages/86/e8/74277b973ecc46d7c30660de441ca4eb3e9e0cc73b9b5e19e85f02ef4952/arviz-0.20.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "354fa815269ea59566910f2f31d83ebc135e4ba72989d8c51fc2e5ce06f78e2a",
                "md5": "9f875c6be63d130a1f8bb56a8053ced9",
                "sha256": "a2704e0c141410fcaea1973a90cabf280f5aed5c1e10f44381ebd6c144c10a9c"
            },
            "downloads": -1,
            "filename": "arviz-0.20.0.tar.gz",
            "has_sig": false,
            "md5_digest": "9f875c6be63d130a1f8bb56a8053ced9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 1583951,
            "upload_time": "2024-09-28T20:50:30",
            "upload_time_iso_8601": "2024-09-28T20:50:30.373989Z",
            "url": "https://files.pythonhosted.org/packages/35/4f/a815269ea59566910f2f31d83ebc135e4ba72989d8c51fc2e5ce06f78e2a/arviz-0.20.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-28 20:50:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "arviz-devs",
    "github_project": "arviz",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "setuptools",
            "specs": [
                [
                    ">=",
                    "60.0.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.5"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.23.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.9.0"
                ]
            ]
        },
        {
            "name": "packaging",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.5.0"
                ]
            ]
        },
        {
            "name": "xarray",
            "specs": [
                [
                    ">=",
                    "2022.6.0"
                ]
            ]
        },
        {
            "name": "h5netcdf",
            "specs": [
                [
                    ">=",
                    "1.0.2"
                ]
            ]
        },
        {
            "name": "typing_extensions",
            "specs": [
                [
                    ">=",
                    "4.1.0"
                ]
            ]
        },
        {
            "name": "xarray-einstats",
            "specs": [
                [
                    ">=",
                    "0.3"
                ]
            ]
        }
    ],
    "lcname": "arviz"
}
        
Elapsed time: 0.37004s