asoct-mcd


Nameasoct-mcd JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryMinuscule Cell Detection in AS-OCT Medical Images
upload_time2025-09-19 15:36:48
maintainerB. Chen
docs_urlNone
authorB. Chen
requires_python>=3.9
licenseMIT
keywords medical-imaging cell-detection optical-coherence-tomography computer-vision deep-learning
VCS
bugtrack_url
requirements numpy matplotlib pandas opencv-python torch torchvision scikit-image scikit-learn yacs segment-anything
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ASOCT-MCD: Minuscule Cell Detection in AS-OCT Images

A Python package for detecting minuscule cells in Anterior Segment Optical Coherence Tomography (AS-OCT) medical images.

## Installation

```bash
pip install asoct-mcd
```

## Basic Usage

```python
from asoct_mcd.pipeline import MCDPipelineBuilder

# Create pipeline with default settings
pipeline = MCDPipelineBuilder().build()

# Detect cells in image
result = pipeline.detect_cells("image.png")

# Print results
print(f"Detected {result.cell_count} cells")
print(f"Cell locations: {result.cell_locations}")
```

## Custom Configuration

```python
# Using dictionary configuration
config = {
    "threshold": {"lambda_factor": 0.9, "method": "isodata"},
}

pipeline = MCDPipelineBuilder().from_dict(config).build()
result = pipeline.detect_cells("image.png")
```

```python
# Using YAML configuration
pipeline = MCDPipelineBuilder().from_yaml("your_config.yaml").build()
result = pipeline.detect_cells("image.png")
```


## Model Storage and Management
Default Model Storage Locations
The ASOCT-MCD package automatically downloads and manages pre-trained models. Models are cached locally following standard ML library conventions:
Default Cache Directories
Linux/macOS:
```
~/.cache/asoct_mcd/models/
├── sam_vit_b_01ec64.pth              # SAM ViT-B segmentation model (~375MB)
└── spatial_attention_network.pth     # Cell classification model (~1MB)
```
Windows:
```
C:\Users\<username>\.cache\asoct_mcd\models\
├── sam_vit_b_01ec64.pth              # SAM ViT-B segmentation model (~375MB)
└── spatial_attention_network.pth     # Cell classification model (~1MB)
```

## Requirements
- Python >= 3.9
- See requirements.txt for full list

## Citation

arXiv: https://arxiv.org/abs/2503.12249

To cite MCD in publications, please use:

```bibtex
@article{chen2025minuscule,
      title={Minuscule Cell Detection in AS-OCT Images with Progressive Field-of-View Focusing}, 
      author={Boyu Chen, Ameenat L. Solebo, Daqian Shi, Jinge Wu, Paul Taylor},
      year={2025},
      journal={arXiv preprint arXiv:2503.12249}
}

```
## Acknowledgements
Thanks to the support of AWS Doctoral Scholarship in Digital Innovation, awarded through the UCL Centre for Digital Innovation. We thank them for their generous support.
![](readme_images/AWS.png)
![](readme_images/CDI.png)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "asoct-mcd",
    "maintainer": "B. Chen",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "medical-imaging, cell-detection, optical-coherence-tomography, computer-vision, deep-learning",
    "author": "B. Chen",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/4b/b8/88615a06a203715d9ac29ecdf64f376e461d71d9f211322e5412049c1e64/asoct_mcd-0.2.1.tar.gz",
    "platform": null,
    "description": "# ASOCT-MCD: Minuscule Cell Detection in AS-OCT Images\r\n\r\nA Python package for detecting minuscule cells in Anterior Segment Optical Coherence Tomography (AS-OCT) medical images.\r\n\r\n## Installation\r\n\r\n```bash\r\npip install asoct-mcd\r\n```\r\n\r\n## Basic Usage\r\n\r\n```python\r\nfrom asoct_mcd.pipeline import MCDPipelineBuilder\r\n\r\n# Create pipeline with default settings\r\npipeline = MCDPipelineBuilder().build()\r\n\r\n# Detect cells in image\r\nresult = pipeline.detect_cells(\"image.png\")\r\n\r\n# Print results\r\nprint(f\"Detected {result.cell_count} cells\")\r\nprint(f\"Cell locations: {result.cell_locations}\")\r\n```\r\n\r\n## Custom Configuration\r\n\r\n```python\r\n# Using dictionary configuration\r\nconfig = {\r\n    \"threshold\": {\"lambda_factor\": 0.9, \"method\": \"isodata\"},\r\n}\r\n\r\npipeline = MCDPipelineBuilder().from_dict(config).build()\r\nresult = pipeline.detect_cells(\"image.png\")\r\n```\r\n\r\n```python\r\n# Using YAML configuration\r\npipeline = MCDPipelineBuilder().from_yaml(\"your_config.yaml\").build()\r\nresult = pipeline.detect_cells(\"image.png\")\r\n```\r\n\r\n\r\n## Model Storage and Management\r\nDefault Model Storage Locations\r\nThe ASOCT-MCD package automatically downloads and manages pre-trained models. Models are cached locally following standard ML library conventions:\r\nDefault Cache Directories\r\nLinux/macOS:\r\n```\r\n~/.cache/asoct_mcd/models/\r\n\u251c\u2500\u2500 sam_vit_b_01ec64.pth              # SAM ViT-B segmentation model (~375MB)\r\n\u2514\u2500\u2500 spatial_attention_network.pth     # Cell classification model (~1MB)\r\n```\r\nWindows:\r\n```\r\nC:\\Users\\<username>\\.cache\\asoct_mcd\\models\\\r\n\u251c\u2500\u2500 sam_vit_b_01ec64.pth              # SAM ViT-B segmentation model (~375MB)\r\n\u2514\u2500\u2500 spatial_attention_network.pth     # Cell classification model (~1MB)\r\n```\r\n\r\n## Requirements\r\n- Python >= 3.9\r\n- See requirements.txt for full list\r\n\r\n## Citation\r\n\r\narXiv: https://arxiv.org/abs/2503.12249\r\n\r\nTo cite MCD in publications, please use:\r\n\r\n```bibtex\r\n@article{chen2025minuscule,\r\n      title={Minuscule Cell Detection in AS-OCT Images with Progressive Field-of-View Focusing}, \r\n      author={Boyu Chen, Ameenat L. Solebo, Daqian Shi, Jinge Wu, Paul Taylor},\r\n      year={2025},\r\n      journal={arXiv preprint arXiv:2503.12249}\r\n}\r\n\r\n```\r\n## Acknowledgements\r\nThanks to the support of AWS Doctoral Scholarship in Digital Innovation, awarded through the UCL Centre for Digital Innovation. We thank them for their generous support.\r\n![](readme_images/AWS.png)\r\n![](readme_images/CDI.png)\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Minuscule Cell Detection in AS-OCT Medical Images",
    "version": "0.2.1",
    "project_urls": {
        "github": "https://github.com/joeybyc/MCD"
    },
    "split_keywords": [
        "medical-imaging",
        " cell-detection",
        " optical-coherence-tomography",
        " computer-vision",
        " deep-learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "616198ef6cc32520a501e3bfe015acf90dd5faf24322af83deaff14801364c64",
                "md5": "907db8b9af4dc29a6660684b169b1204",
                "sha256": "fb36107648a529992f938a69742a886aca26f2d4d4c312ba9837b38d02efdd40"
            },
            "downloads": -1,
            "filename": "asoct_mcd-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "907db8b9af4dc29a6660684b169b1204",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 39663,
            "upload_time": "2025-09-19T15:36:47",
            "upload_time_iso_8601": "2025-09-19T15:36:47.593705Z",
            "url": "https://files.pythonhosted.org/packages/61/61/98ef6cc32520a501e3bfe015acf90dd5faf24322af83deaff14801364c64/asoct_mcd-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4bb888615a06a203715d9ac29ecdf64f376e461d71d9f211322e5412049c1e64",
                "md5": "cc1d8b5dd7c9777d9a71373835abd288",
                "sha256": "ec267b281a76aee714081a8cc541a0c840752876e0e135d375080ea550e2d0b0"
            },
            "downloads": -1,
            "filename": "asoct_mcd-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "cc1d8b5dd7c9777d9a71373835abd288",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 24722,
            "upload_time": "2025-09-19T15:36:48",
            "upload_time_iso_8601": "2025-09-19T15:36:48.867396Z",
            "url": "https://files.pythonhosted.org/packages/4b/b8/88615a06a203715d9ac29ecdf64f376e461d71d9f211322e5412049c1e64/asoct_mcd-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-19 15:36:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "joeybyc",
    "github_project": "MCD",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.26.3"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.8.2"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "2.1.4"
                ]
            ]
        },
        {
            "name": "opencv-python",
            "specs": [
                [
                    "==",
                    "4.9.0.80"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    "==",
                    "2.1.2"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    "==",
                    "0.16.2"
                ]
            ]
        },
        {
            "name": "scikit-image",
            "specs": [
                [
                    "==",
                    "0.22.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "1.4.0"
                ]
            ]
        },
        {
            "name": "yacs",
            "specs": [
                [
                    "==",
                    "0.1.8"
                ]
            ]
        },
        {
            "name": "segment-anything",
            "specs": [
                [
                    "==",
                    "1.0"
                ]
            ]
        }
    ],
    "lcname": "asoct-mcd"
}
        
Elapsed time: 1.25446s