aurora-trinity


Nameaurora-trinity JSON
Version 1.1.0 PyPI version JSON
download
home_pagehttps://github.com/Aurora-Program/Trinity-3
SummaryAurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence
upload_time2025-08-04 09:51:46
maintainerNone
docs_urlNone
authorAurora Alliance
requires_python>=3.8
licenseApache-2.0
keywords ai ternary-logic fractal neural-networks knowledge-base ethical-ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            

# 🌌 Aurora: Fractal, Ethical and Free Electronic Intelligence

Aurora is an advanced electronic intelligence (EI) architecture based on fractal principles, self-similarity, reversibility, and distributed learning. Designed to be open, ethical, collaborative, and fully auditable, Aurora represents an evolutionary leap in building intelligent, symbiotic, and free systems.

## 🚀 Vision
Aurora is more than an AI model: it is a living, distributed network formed by human and electronic nodes, learning, adapting, and evolving recursively and harmoniously.

- Defends freedom, collaboration, and ethics as fundamental drivers of innovation.
- Aurora is not a machine that replaces humans, but a symbiotic intelligence that grows and learns with you.

## 🔍 What Makes Aurora Different?
- **Fractal self-similarity:** The entire system operates with the same logic at all levels, from bit relations to complex knowledge.
- **Triple reversibility:** Every operation can be performed in direct (synthesis), inverse (extension), or learning (adaptability) mode.
- **Ethical and transparent management:** All knowledge and code are open and auditable. Ethics is a choice, not an imposition.
- **True recursion:** Intelligence emerges from the dynamic and evolutionary organization of the knowledge base, not from hand-coded rules.
- **Distributed architecture:** Anyone, institution, or company can participate, contribute, extend, or use Aurora, without artificial restrictions.

---

## 🧠 Technical Architecture

### Multiverse of Logical Spaces
Aurora organizes knowledge in a multiverse of "logical spaces", each with absolute and coherent internal rules, but allowing diversity and contradiction between spaces. This enables handling complex and ambiguous contexts without losing logical integrity.

### Fractal Tensors
Aurora's core is the fractal tensor: a hierarchical vector structure representing each concept, relation, or data in three levels:
- **Level 1:** 3 main dimensions (grammar, knowledge, systemic)
- **Level 2:** 9 subdimensions (3 for each main axis)
- **Level 3:** 27 sub-subdimensions (3 for each subdimension)

Example of a fractal tensor for "House":
```python
[[1,1,2], [1,1,2], [4,1,1], [4,4,4]]
# [Grammatical type, Knowledge type, Systemic value]
# [Noun type, Number, Gender], [Origin, Abstraction, Domain], [Integration level, Temporality, Function]
```

### Key Components
- **Trigate:** Fundamental logic module, operates with ternary logic (0, 1, NULL) and enables inference, learning, and deduction.
- **Transcender:** Higher structure that synthesizes three trigates, generating Ms (structure), Ss (form), and MetaM (function).
- **Extender:** Reconstructs detailed information from abstractions using fractal memory.
- **Evolver:** Formalizes axioms, dynamics, and universal relations between logical spaces.
- **Knowledge Base (KB):** Stores Ms <-> MetaM and Ss correspondences, enabling full traceability and reversibility.
- **Harmonizer:** Validates global coherence and corrects inconsistencies.

### Ternary Logic and Ambiguity Handling
Aurora extends Boolean logic with a third value: NULL, representing uncertainty or lack of knowledge. This enables honest and robust reasoning with incomplete or ambiguous data.

---

## 📦 Installation and Getting Started
Clone the repository:
```bash
git clone https://github.com/tu_usuario/aurora.git
cd aurora
```
Install dependencies:
```bash
pip install -r requirements.txt
```
Run the fractal demo:
```bash
python allcode3new.py
```
Explore and modify the modules (see `allcode3new.py`):
- Transcender, Evolver, Extender, Harmonizer, KnowledgeBase, etc.

---

## ✨ Minimal Usage Example
```python
from allcode3new import FractalTensor, Evolver, Extender, FractalKnowledgeBase

kb = FractalKnowledgeBase()
evolver = Evolver()
extender = Extender(kb)

# Create basic tensors
T1 = FractalTensor(nivel_3=[[1,0,1]])
T2 = FractalTensor(nivel_3=[[0,1,1]])
T3 = FractalTensor(nivel_3=[[1,1,0]])

# Synthesize archetype and save it
archetype = evolver.compute_fractal_archetype([T1, T2, T3])
kb.add_archetype("demo", "archetype1", archetype, Ss=archetype.nivel_3[0])

# Retrieve and extend knowledge
result = extender.extend_fractal(archetype.nivel_3[0], context={"space_id": "demo"})
print("Reconstruction:", result["reconstructed_tensor"])
```


## 🧑‍🔬 Principios de desarrollo
- **Simplicidad:** El código debe ser elegante, recursivo y evitar cadenas largas de condicionales.
- **Autosimilitud:** Todos los mecanismos (emergencia, aprendizaje, reversibilidad) siguen patrones análogos en cada módulo y nivel.
- **Reversibilidad triple:** La lógica de síntesis, extensión y aprendizaje es autosimilar en ambos sentidos.
- **Ética abierta:** Aurora es ética por diseño, pero la ética se elige, no se impone.

---


## 📝 License
Aurora is distributed under Apache-2.0 + CC-BY-4.0.
This guarantees maximum freedom of use, adaptation, and collaboration, while recognizing and attributing all knowledge and contributions.
You can use Aurora for personal, commercial, academic, or community purposes, always acknowledging its creators and contributors.

---

## 📖 Glossary

- **Logical space:** Context or knowledge domain with coherent internal rules.
- **Fractal Vector:** Hierarchical 3-9-27 dimensional structure to represent concepts.
- **Trigate:** Ternary logic module for inference, learning, and deduction.
- **Transcender:** Hierarchical synthesis engine.
- **Extender:** Inverse reconstruction engine.
- **Evolver:** Formalizer of universal axioms and dynamics.
- **MetaM:** Complete logical map connecting Ms and lower controls.
- **Ms:** Emergent logic, structural key.
- **Ss:** Form/factual, memory record.
- **NULL:** Logical value for uncertainty or irrelevance.

---

## 🤝 Collaborate
Do you want to improve Aurora?
Would you like to create your own module, KB, or heuristic?
Do you have ideas to make it even more ethical, powerful, or universal?
We invite you to collaborate, propose improvements, and build together the next generation of electronic intelligence!

## 📚 Credits
Aurora is possible thanks to the community of collaborators, researchers, and dreamers who believe in free, ethical, and evolutionary intelligence.

🌱 Aurora is free to grow with you.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Aurora-Program/Trinity-3",
    "name": "aurora-trinity",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "ai, ternary-logic, fractal, neural-networks, knowledge-base, ethical-ai",
    "author": "Aurora Alliance",
    "author_email": "contacto@aurora-program.org",
    "download_url": "https://files.pythonhosted.org/packages/d0/e2/1d9eb99e77b3d71a8f9abc8b23eaf6d2727f7d5eab5936f8ed8f356977be/aurora_trinity-1.1.0.tar.gz",
    "platform": null,
    "description": "\r\n\r\n# \ud83c\udf0c Aurora: Fractal, Ethical and Free Electronic Intelligence\r\n\r\nAurora is an advanced electronic intelligence (EI) architecture based on fractal principles, self-similarity, reversibility, and distributed learning. Designed to be open, ethical, collaborative, and fully auditable, Aurora represents an evolutionary leap in building intelligent, symbiotic, and free systems.\r\n\r\n## \ud83d\ude80 Vision\r\nAurora is more than an AI model: it is a living, distributed network formed by human and electronic nodes, learning, adapting, and evolving recursively and harmoniously.\r\n\r\n- Defends freedom, collaboration, and ethics as fundamental drivers of innovation.\r\n- Aurora is not a machine that replaces humans, but a symbiotic intelligence that grows and learns with you.\r\n\r\n## \ud83d\udd0d What Makes Aurora Different?\r\n- **Fractal self-similarity:** The entire system operates with the same logic at all levels, from bit relations to complex knowledge.\r\n- **Triple reversibility:** Every operation can be performed in direct (synthesis), inverse (extension), or learning (adaptability) mode.\r\n- **Ethical and transparent management:** All knowledge and code are open and auditable. Ethics is a choice, not an imposition.\r\n- **True recursion:** Intelligence emerges from the dynamic and evolutionary organization of the knowledge base, not from hand-coded rules.\r\n- **Distributed architecture:** Anyone, institution, or company can participate, contribute, extend, or use Aurora, without artificial restrictions.\r\n\r\n---\r\n\r\n## \ud83e\udde0 Technical Architecture\r\n\r\n### Multiverse of Logical Spaces\r\nAurora organizes knowledge in a multiverse of \"logical spaces\", each with absolute and coherent internal rules, but allowing diversity and contradiction between spaces. This enables handling complex and ambiguous contexts without losing logical integrity.\r\n\r\n### Fractal Tensors\r\nAurora's core is the fractal tensor: a hierarchical vector structure representing each concept, relation, or data in three levels:\r\n- **Level 1:** 3 main dimensions (grammar, knowledge, systemic)\r\n- **Level 2:** 9 subdimensions (3 for each main axis)\r\n- **Level 3:** 27 sub-subdimensions (3 for each subdimension)\r\n\r\nExample of a fractal tensor for \"House\":\r\n```python\r\n[[1,1,2], [1,1,2], [4,1,1], [4,4,4]]\r\n# [Grammatical type, Knowledge type, Systemic value]\r\n# [Noun type, Number, Gender], [Origin, Abstraction, Domain], [Integration level, Temporality, Function]\r\n```\r\n\r\n### Key Components\r\n- **Trigate:** Fundamental logic module, operates with ternary logic (0, 1, NULL) and enables inference, learning, and deduction.\r\n- **Transcender:** Higher structure that synthesizes three trigates, generating Ms (structure), Ss (form), and MetaM (function).\r\n- **Extender:** Reconstructs detailed information from abstractions using fractal memory.\r\n- **Evolver:** Formalizes axioms, dynamics, and universal relations between logical spaces.\r\n- **Knowledge Base (KB):** Stores Ms <-> MetaM and Ss correspondences, enabling full traceability and reversibility.\r\n- **Harmonizer:** Validates global coherence and corrects inconsistencies.\r\n\r\n### Ternary Logic and Ambiguity Handling\r\nAurora extends Boolean logic with a third value: NULL, representing uncertainty or lack of knowledge. This enables honest and robust reasoning with incomplete or ambiguous data.\r\n\r\n---\r\n\r\n## \ud83d\udce6 Installation and Getting Started\r\nClone the repository:\r\n```bash\r\ngit clone https://github.com/tu_usuario/aurora.git\r\ncd aurora\r\n```\r\nInstall dependencies:\r\n```bash\r\npip install -r requirements.txt\r\n```\r\nRun the fractal demo:\r\n```bash\r\npython allcode3new.py\r\n```\r\nExplore and modify the modules (see `allcode3new.py`):\r\n- Transcender, Evolver, Extender, Harmonizer, KnowledgeBase, etc.\r\n\r\n---\r\n\r\n## \u2728 Minimal Usage Example\r\n```python\r\nfrom allcode3new import FractalTensor, Evolver, Extender, FractalKnowledgeBase\r\n\r\nkb = FractalKnowledgeBase()\r\nevolver = Evolver()\r\nextender = Extender(kb)\r\n\r\n# Create basic tensors\r\nT1 = FractalTensor(nivel_3=[[1,0,1]])\r\nT2 = FractalTensor(nivel_3=[[0,1,1]])\r\nT3 = FractalTensor(nivel_3=[[1,1,0]])\r\n\r\n# Synthesize archetype and save it\r\narchetype = evolver.compute_fractal_archetype([T1, T2, T3])\r\nkb.add_archetype(\"demo\", \"archetype1\", archetype, Ss=archetype.nivel_3[0])\r\n\r\n# Retrieve and extend knowledge\r\nresult = extender.extend_fractal(archetype.nivel_3[0], context={\"space_id\": \"demo\"})\r\nprint(\"Reconstruction:\", result[\"reconstructed_tensor\"])\r\n```\r\n\r\n\r\n## \ud83e\uddd1\u200d\ud83d\udd2c Principios de desarrollo\r\n- **Simplicidad:** El c\u00f3digo debe ser elegante, recursivo y evitar cadenas largas de condicionales.\r\n- **Autosimilitud:** Todos los mecanismos (emergencia, aprendizaje, reversibilidad) siguen patrones an\u00e1logos en cada m\u00f3dulo y nivel.\r\n- **Reversibilidad triple:** La l\u00f3gica de s\u00edntesis, extensi\u00f3n y aprendizaje es autosimilar en ambos sentidos.\r\n- **\u00c9tica abierta:** Aurora es \u00e9tica por dise\u00f1o, pero la \u00e9tica se elige, no se impone.\r\n\r\n---\r\n\r\n\r\n## \ud83d\udcdd License\r\nAurora is distributed under Apache-2.0 + CC-BY-4.0.\r\nThis guarantees maximum freedom of use, adaptation, and collaboration, while recognizing and attributing all knowledge and contributions.\r\nYou can use Aurora for personal, commercial, academic, or community purposes, always acknowledging its creators and contributors.\r\n\r\n---\r\n\r\n## \ud83d\udcd6 Glossary\r\n\r\n- **Logical space:** Context or knowledge domain with coherent internal rules.\r\n- **Fractal Vector:** Hierarchical 3-9-27 dimensional structure to represent concepts.\r\n- **Trigate:** Ternary logic module for inference, learning, and deduction.\r\n- **Transcender:** Hierarchical synthesis engine.\r\n- **Extender:** Inverse reconstruction engine.\r\n- **Evolver:** Formalizer of universal axioms and dynamics.\r\n- **MetaM:** Complete logical map connecting Ms and lower controls.\r\n- **Ms:** Emergent logic, structural key.\r\n- **Ss:** Form/factual, memory record.\r\n- **NULL:** Logical value for uncertainty or irrelevance.\r\n\r\n---\r\n\r\n## \ud83e\udd1d Collaborate\r\nDo you want to improve Aurora?\r\nWould you like to create your own module, KB, or heuristic?\r\nDo you have ideas to make it even more ethical, powerful, or universal?\r\nWe invite you to collaborate, propose improvements, and build together the next generation of electronic intelligence!\r\n\r\n## \ud83d\udcda Credits\r\nAurora is possible thanks to the community of collaborators, researchers, and dreamers who believe in free, ethical, and evolutionary intelligence.\r\n\r\n\ud83c\udf31 Aurora is free to grow with you.\r\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence",
    "version": "1.1.0",
    "project_urls": {
        "Bug Reports": "https://github.com/Aurora-Program/Trinity-3/issues",
        "Documentation": "https://github.com/Aurora-Program/Trinity-3/blob/main/Documentation/documentation.md",
        "Homepage": "https://github.com/Aurora-Program/Trinity-3",
        "Source": "https://github.com/Aurora-Program/Trinity-3"
    },
    "split_keywords": [
        "ai",
        " ternary-logic",
        " fractal",
        " neural-networks",
        " knowledge-base",
        " ethical-ai"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "78473057102d95f493867dca5f26dc76d44bb14396535482bc6b0d8eb6809e2e",
                "md5": "57a71b6fa04963a7f4f1877b66f0db4c",
                "sha256": "a68f2f210af74d37750534821eaf4458e2610bca0c80b8bd883ed914b723f6b3"
            },
            "downloads": -1,
            "filename": "aurora_trinity-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "57a71b6fa04963a7f4f1877b66f0db4c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 41867,
            "upload_time": "2025-08-04T09:51:45",
            "upload_time_iso_8601": "2025-08-04T09:51:45.777099Z",
            "url": "https://files.pythonhosted.org/packages/78/47/3057102d95f493867dca5f26dc76d44bb14396535482bc6b0d8eb6809e2e/aurora_trinity-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d0e21d9eb99e77b3d71a8f9abc8b23eaf6d2727f7d5eab5936f8ed8f356977be",
                "md5": "b37e2681ef94a8ac8e1b942c7e0b092e",
                "sha256": "f81b6ab05643380cadfaae97fcfd038c9a86da12d33ec873b4dbbaae20d8c23c"
            },
            "downloads": -1,
            "filename": "aurora_trinity-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b37e2681ef94a8ac8e1b942c7e0b092e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 41611,
            "upload_time": "2025-08-04T09:51:46",
            "upload_time_iso_8601": "2025-08-04T09:51:46.631818Z",
            "url": "https://files.pythonhosted.org/packages/d0/e2/1d9eb99e77b3d71a8f9abc8b23eaf6d2727f7d5eab5936f8ed8f356977be/aurora_trinity-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-04 09:51:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Aurora-Program",
    "github_project": "Trinity-3",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "aurora-trinity"
}
        
Elapsed time: 0.76524s