BCDI: tools for pre(post)-processing Bragg and forward coherent X-ray
diffraction imaging data.
BCDI stands for *Bragg coherent X-ray diffraction imaging*.
It can be used for:
1. Pre-processing BCDI and forward CDI data (masking aliens, detector gaps)
before phase retrieval.
2. Post-processing phased data (phase offset and phase ramp removal,
averaging, apodization...).
3. Data analysis on diffraction data (stereographic projection,
angular cross correlation analysis, domain orientation fitting ...).
4. Data analysis on phased data (resolution calculation, statistics on the
retrieved strain...).
5. Simulation of diffraction intensity (including noise, detector gaps,
displacement...).
6. Creating figures for publication using templates.
Raw data
{
"_id": null,
"home_page": "https://github.com/carnisj/bcdi",
"name": "bcdi",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8, <3.11",
"maintainer_email": "",
"keywords": "BCDI Bragg coherent X-rays diffraction imaging",
"author": "Jerome Carnis",
"author_email": "carnis_jerome@yahoo.fr",
"download_url": "https://files.pythonhosted.org/packages/87/96/68a1682919b081a499f9f94d73887f1f157c3c259481059dfd2ba7657845/bcdi-0.3.1.tar.gz",
"platform": null,
"description": "\r\n BCDI: tools for pre(post)-processing Bragg and forward coherent X-ray\r\n diffraction imaging data.\r\n\r\n BCDI stands for *Bragg coherent X-ray diffraction imaging*.\r\n\r\n It can be used for:\r\n\r\n 1. Pre-processing BCDI and forward CDI data (masking aliens, detector gaps)\r\n before phase retrieval.\r\n 2. Post-processing phased data (phase offset and phase ramp removal,\r\n averaging, apodization...).\r\n 3. Data analysis on diffraction data (stereographic projection,\r\n angular cross correlation analysis, domain orientation fitting ...).\r\n 4. Data analysis on phased data (resolution calculation, statistics on the\r\n retrieved strain...).\r\n 5. Simulation of diffraction intensity (including noise, detector gaps,\r\n displacement...).\r\n 6. Creating figures for publication using templates.\r\n",
"bugtrack_url": null,
"license": "CeCILL-B",
"summary": "BCDI: tools for pre(post)-processing Bragg and",
"version": "0.3.1",
"split_keywords": [
"bcdi",
"bragg",
"coherent",
"x-rays",
"diffraction",
"imaging"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "bb75453dd494a1f1d1cfd8bd2212795f7d2f5a14e37204654733592a16613e35",
"md5": "9bf9aed003bca73bde846403b933d65a",
"sha256": "6c1c8a1ac2b4fcccb2230c48cbb016fe0c829c2611da98c4129fc88d7e91da1d"
},
"downloads": -1,
"filename": "bcdi-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9bf9aed003bca73bde846403b933d65a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8, <3.11",
"size": 17522899,
"upload_time": "2023-03-18T20:22:05",
"upload_time_iso_8601": "2023-03-18T20:22:05.501134Z",
"url": "https://files.pythonhosted.org/packages/bb/75/453dd494a1f1d1cfd8bd2212795f7d2f5a14e37204654733592a16613e35/bcdi-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "879668a1682919b081a499f9f94d73887f1f157c3c259481059dfd2ba7657845",
"md5": "8d91922c4546e02494933a05d180ffbe",
"sha256": "7e8f10b7d78e37544581568b5dd759061d9c0a1328535545eead32c24e5fc184"
},
"downloads": -1,
"filename": "bcdi-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "8d91922c4546e02494933a05d180ffbe",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8, <3.11",
"size": 17822411,
"upload_time": "2023-03-18T20:22:09",
"upload_time_iso_8601": "2023-03-18T20:22:09.820152Z",
"url": "https://files.pythonhosted.org/packages/87/96/68a1682919b081a499f9f94d73887f1f157c3c259481059dfd2ba7657845/bcdi-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-18 20:22:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "carnisj",
"github_project": "bcdi",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "black",
"specs": [
[
"==",
"23.1.0"
]
]
},
{
"name": "colorcet",
"specs": [
[
"==",
"3.0.1"
]
]
},
{
"name": "coverage",
"specs": [
[
"==",
"7.2.2"
]
]
},
{
"name": "doit",
"specs": [
[
"==",
"0.36.0"
]
]
},
{
"name": "fabio",
"specs": [
[
"==",
"2022.12.1"
]
]
},
{
"name": "h5py",
"specs": [
[
"==",
"3.8.0"
]
]
},
{
"name": "hdf5plugin",
"specs": [
[
"==",
"4.1.1"
]
]
},
{
"name": "importlib-resources",
"specs": [
[
"==",
"5.12.0"
]
]
},
{
"name": "ipywidgets",
"specs": [
[
"==",
"8.0.4"
]
]
},
{
"name": "isort",
"specs": [
[
"==",
"5.12.0"
]
]
},
{
"name": "lmfit",
"specs": [
[
"==",
"1.1.0"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"==",
"3.7.1"
]
]
},
{
"name": "moviepy",
"specs": [
[
"==",
"1.0.3"
]
]
},
{
"name": "mypy",
"specs": [
[
"==",
"1.1.1"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"1.24.2"
]
]
},
{
"name": "pandas",
"specs": [
[
"==",
"1.5.3"
]
]
},
{
"name": "Pillow",
"specs": [
[
"==",
"9.4.0"
]
]
},
{
"name": "pycodestyle",
"specs": [
[
"==",
"2.10.0"
]
]
},
{
"name": "pydocstyle",
"specs": [
[
"==",
"6.3.0"
]
]
},
{
"name": "pyfakefs",
"specs": [
[
"==",
"5.1.0"
]
]
},
{
"name": "PyQt5",
"specs": [
[
"==",
"5.15.9"
]
]
},
{
"name": "PyYAML",
"specs": [
[
"==",
"6.0"
]
]
},
{
"name": "scikit-image",
"specs": [
[
"==",
"0.20.0"
]
]
},
{
"name": "scipy",
"specs": [
[
"==",
"1.9.1"
]
]
},
{
"name": "silx",
"specs": [
[
"==",
"1.1.2"
]
]
},
{
"name": "Sphinx",
"specs": [
[
"==",
"6.1.3"
]
]
},
{
"name": "sphinxcontrib-mermaid",
"specs": [
[
"==",
"0.8.1"
]
]
},
{
"name": "tables",
"specs": [
[
"==",
"3.8.0"
]
]
},
{
"name": "traits",
"specs": [
[
"==",
"6.4.1"
]
]
},
{
"name": "twine",
"specs": [
[
"==",
"4.0.2"
]
]
},
{
"name": "vtk",
"specs": [
[
"==",
"9.2.6"
]
]
},
{
"name": "wheel",
"specs": [
[
"==",
"0.40.0"
]
]
},
{
"name": "xrayutilities",
"specs": [
[
"==",
"1.7.4"
]
]
}
],
"lcname": "bcdi"
}