bdi-viz


Namebdi-viz JSON
Version 0.1.0.dev0 PyPI version JSON
download
home_pagehttps://github.com/VIDA-NYU/bdi-viz
Summarybdi-viz library
upload_time2025-01-07 01:38:34
maintainerEden Wu
docs_urlNone
authorEden Wu
requires_pythonNone
licenseApache-2.0
keywords askem data integration nyu
VCS
bugtrack_url
requirements altair bdi-kit bokeh datamart_profiler panel
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # bdi-viz
[![Tests](https://github.com/VIDA-NYU/bdi-viz/actions/workflows/build.yml/badge.svg)](https://github.com/VIDA-NYU/bdi-viz/actions/workflows/build.yml)
[![Lint](https://github.com/VIDA-NYU/bdi-viz/actions/workflows/lint.yml/badge.svg)](https://github.com/VIDA-NYU/bdi-viz/actions/workflows/lint.yml)
[![Documentation Status](https://readthedocs.org/projects/bdi-viz/badge/?version=latest)](https://bdi-viz.readthedocs.io/en/latest/)


## Contents

- [1. Introduction](#sparkle-1-introduction)
- [2. Installation](#package-2-installation)
- [3. Quick Start](#rocket-3-quick-start)
- [4. Documentation](#page_facing_up-4-documentation)
  - [4.1 Read the Docs](#41-read-the-docs)
  - [4.2 Demo Video](#42-demo-video)

## :sparkle: 1. Introduction

BDIViz is a powerful, interactive tool designed as an extension to [BDIKit](https://github.com/VIDA-NYU/bdi-kit) to assist biomedical researchers and domain experts in performing schema matching tasks. Built to address the challenges of matching complex biomedical datasets, BDIViz leverages a visual approach to streamline the process and enhance both speed and accuracy.

Key features of BDIViz include:

- **Interactive Heatmap** for exploring and comparing matching candidates.
- **Value Comparisons** Panel for analyzing similarities between attributes.
- **Detailed Analysis** Panel offering in-depth insights into attribute value distributions.
- **Filtering & Refinement Tools** to customize and adjust matching candidates based on datatype and similarity scores.
- **Expert-in-the-Loop Workflow** allowing users to iteratively accept, reject, or refine matches, keeping the expert in control of decision-making.

BDIViz is designed to be integrated with Python notebooks, providing a flexible and easy-to-use tool for domain-specific schema matching in biomedical research and beyond.

## :package: 2. Installation

To use ``BDI-Viz``, install it using pip:

```bash
pip install bdi-viz
```


## :rocket: 3. Quick Start
``BDI-Viz 1.0`` is built leveraging [Panel](https://panel.holoviz.org/). The application is designed to provide a user-friendly interface on jupyter notebooks. Where users can explore the schema matching recommandations, interact with the result, and pass them to the next step of the data integration process.

```python
import pandas as pd
from bdiviz import BDISchemaMatchingHeatMap

# Load the data
source_df = pd.read_csv('data/source.csv')
target_df = pd.read_csv('data/target.csv')

# Render the BDI-Viz Heatmap
heatmap_manager = BDISchemaMatchingHeatMap(
    source=source_df,
    target=target_df,
    top_k=20,
)
heatmap_manager.plot_heatmap()
```

The following interface will be displayed in the jupyter notebook:
![BDIViz Demo](docs/bdiviz-demo.png)


## :page_facing_up: 4. Documentation

### 4.1 Read the Docs
For more information, please refer to the [documentation](https://bdi-viz.readthedocs.io/en/latest/).

### 4.2 Demo Video
[BDIViz Demo](https://drive.google.com/file/d/1eAbDicO0oXIbbVg56m3H8xdNDDsBGBLI/view?usp=drive_link)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/VIDA-NYU/bdi-viz",
    "name": "bdi-viz",
    "maintainer": "Eden Wu",
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": "eden.wu@nyu.edu",
    "keywords": "askem, data integration, nyu",
    "author": "Eden Wu",
    "author_email": "eden.wu@nyu.edu",
    "download_url": "https://files.pythonhosted.org/packages/a6/29/de80ed098ac225467734666eb8c3f87014f44df2b269420ffc526122bb82/bdi_viz-0.1.0.dev0.tar.gz",
    "platform": null,
    "description": "# bdi-viz\n[![Tests](https://github.com/VIDA-NYU/bdi-viz/actions/workflows/build.yml/badge.svg)](https://github.com/VIDA-NYU/bdi-viz/actions/workflows/build.yml)\n[![Lint](https://github.com/VIDA-NYU/bdi-viz/actions/workflows/lint.yml/badge.svg)](https://github.com/VIDA-NYU/bdi-viz/actions/workflows/lint.yml)\n[![Documentation Status](https://readthedocs.org/projects/bdi-viz/badge/?version=latest)](https://bdi-viz.readthedocs.io/en/latest/)\n\n\n## Contents\n\n- [1. Introduction](#sparkle-1-introduction)\n- [2. Installation](#package-2-installation)\n- [3. Quick Start](#rocket-3-quick-start)\n- [4. Documentation](#page_facing_up-4-documentation)\n  - [4.1 Read the Docs](#41-read-the-docs)\n  - [4.2 Demo Video](#42-demo-video)\n\n## :sparkle: 1. Introduction\n\nBDIViz is a powerful, interactive tool designed as an extension to [BDIKit](https://github.com/VIDA-NYU/bdi-kit) to assist biomedical researchers and domain experts in performing schema matching tasks. Built to address the challenges of matching complex biomedical datasets, BDIViz leverages a visual approach to streamline the process and enhance both speed and accuracy.\n\nKey features of BDIViz include:\n\n- **Interactive Heatmap** for exploring and comparing matching candidates.\n- **Value Comparisons** Panel for analyzing similarities between attributes.\n- **Detailed Analysis** Panel offering in-depth insights into attribute value distributions.\n- **Filtering & Refinement Tools** to customize and adjust matching candidates based on datatype and similarity scores.\n- **Expert-in-the-Loop Workflow** allowing users to iteratively accept, reject, or refine matches, keeping the expert in control of decision-making.\n\nBDIViz is designed to be integrated with Python notebooks, providing a flexible and easy-to-use tool for domain-specific schema matching in biomedical research and beyond.\n\n## :package: 2. Installation\n\nTo use ``BDI-Viz``, install it using pip:\n\n```bash\npip install bdi-viz\n```\n\n\n## :rocket: 3. Quick Start\n``BDI-Viz 1.0`` is built leveraging [Panel](https://panel.holoviz.org/). The application is designed to provide a user-friendly interface on jupyter notebooks. Where users can explore the schema matching recommandations, interact with the result, and pass them to the next step of the data integration process.\n\n```python\nimport pandas as pd\nfrom bdiviz import BDISchemaMatchingHeatMap\n\n# Load the data\nsource_df = pd.read_csv('data/source.csv')\ntarget_df = pd.read_csv('data/target.csv')\n\n# Render the BDI-Viz Heatmap\nheatmap_manager = BDISchemaMatchingHeatMap(\n    source=source_df,\n    target=target_df,\n    top_k=20,\n)\nheatmap_manager.plot_heatmap()\n```\n\nThe following interface will be displayed in the jupyter notebook:\n![BDIViz Demo](docs/bdiviz-demo.png)\n\n\n## :page_facing_up: 4. Documentation\n\n### 4.1 Read the Docs\nFor more information, please refer to the [documentation](https://bdi-viz.readthedocs.io/en/latest/).\n\n### 4.2 Demo Video\n[BDIViz Demo](https://drive.google.com/file/d/1eAbDicO0oXIbbVg56m3H8xdNDDsBGBLI/view?usp=drive_link)\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "bdi-viz library",
    "version": "0.1.0.dev0",
    "project_urls": {
        "Homepage": "https://github.com/VIDA-NYU/bdi-viz"
    },
    "split_keywords": [
        "askem",
        " data integration",
        " nyu"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e9a034d790cbbe8bb0f77ef1839637989f5ec87700fe20ca339042eb13f4b36b",
                "md5": "dc5cd68d950997af2b167fcec7b84c7b",
                "sha256": "90f67f3addd222132a62aa883411e7be140bb0e9781f3ab3f1daee8ddf894553"
            },
            "downloads": -1,
            "filename": "bdi_viz-0.1.0.dev0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dc5cd68d950997af2b167fcec7b84c7b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 18515,
            "upload_time": "2025-01-07T01:38:33",
            "upload_time_iso_8601": "2025-01-07T01:38:33.285502Z",
            "url": "https://files.pythonhosted.org/packages/e9/a0/34d790cbbe8bb0f77ef1839637989f5ec87700fe20ca339042eb13f4b36b/bdi_viz-0.1.0.dev0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a629de80ed098ac225467734666eb8c3f87014f44df2b269420ffc526122bb82",
                "md5": "1fd3532bce74fe75137772ee9cd23411",
                "sha256": "5e145e476919b7aea4bf0dcce55b0fdf09da8b889f9fc17160f2a3a61490a3e3"
            },
            "downloads": -1,
            "filename": "bdi_viz-0.1.0.dev0.tar.gz",
            "has_sig": false,
            "md5_digest": "1fd3532bce74fe75137772ee9cd23411",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 18621,
            "upload_time": "2025-01-07T01:38:34",
            "upload_time_iso_8601": "2025-01-07T01:38:34.408136Z",
            "url": "https://files.pythonhosted.org/packages/a6/29/de80ed098ac225467734666eb8c3f87014f44df2b269420ffc526122bb82/bdi_viz-0.1.0.dev0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-07 01:38:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "VIDA-NYU",
    "github_project": "bdi-viz",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "altair",
            "specs": []
        },
        {
            "name": "bdi-kit",
            "specs": []
        },
        {
            "name": "bokeh",
            "specs": []
        },
        {
            "name": "datamart_profiler",
            "specs": []
        },
        {
            "name": "panel",
            "specs": [
                [
                    "!=",
                    "1.4.3"
                ]
            ]
        }
    ],
    "lcname": "bdi-viz"
}
        
Elapsed time: 0.43916s