bioino


Namebioino JSON
Version 0.0.2.post1 PyPI version JSON
download
home_page
SummaryLightweight IO and conversion for bioinformatics file formats.
upload_time2024-03-19 16:34:29
maintainer
docs_urlNone
author
requires_python>=3.8
license
keywords biology bioinformatics science io
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 💻 bioino

![GitHub Workflow Status (with branch)](https://img.shields.io/github/actions/workflow/status/scbirlab/bioino/python-publish.yml)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/bioino)
![PyPI](https://img.shields.io/pypi/v/bioino)

Command-line tools and Python API for interconverting FASTA, GFF, and CSV. 

**bioino** currently converts tables to FASTA, and GFF to tables. Also provides 
a Python API for handling GFF and FASTA files, and converting to table
files.

_Warning_: **bioino** is under active development, and not fully tested, so 
things may change, break, or simply not work.

## Installation

### The easy way

Install the pre-compiled version from PyPI:

```bash
pip install bioino
```

### From source

Clone the repository, then `cd` into it. Then run:

```bash
pip install -e .
```

## Usage

### Command line

Convert CSV or XLSX of sequences to a FASTA file. Info goes to `stderr`, so you can pipe the output you
want to other tools or to a file.

```bash
$ printf 'name\tseq\tdata\nSeq1\tAAAAA\tSome-info\n' | bioino table2fasta -n name -s seq -d data
🚀 Generating FASTA from tables with the following parameters:
        subcommand: table2fasta
        input: <_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>
        format: TSV
        sequence: seq
        name: ['name']
        description: ['data']
        worksheet: Sheet 1
        output: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>
        func: <function _table2fasta at 0x7f4b48a43d30>
>Seq1 data=Some-info
AAAAA
⏰ Completed process in 0:00:00.025771
```

Convert GFF tables to TSV (or CSV).

```bash
$ printf 'test_seq\ttest_source\tgene\t1\t10\t.\t+\t.\tID=test01;attr1=+\n' | bioino gff2table 2> /dev/null
seqid   source  feature start   end     score   strand  phase   ID      attr1
test_seq        test_source     gene    1       10      .       +       .       test01  +

$ printf 'test_seq\ttest_source\tgene\t1\t10\t.\t+\t.\tID=test01;attr1=+\n' | bioino gff2table -f CSV 2> /dev/nul
l
seqid,source,feature,start,end,score,strand,phase,ID,attr1
test_seq,test_source,gene,1,10,.,+,.,test01,+
```

#### Detailed usage

```bash
$ bioino --help
usage: bioino [-h] {gff2table,table2fasta} ...

Interconvert some bioinformatics file formats.

optional arguments:
  -h, --help            show this help message and exit

Sub-commands:
  {gff2table,table2fasta}
                        Use these commands to specify the tool you want to use.
    gff2table           Convert a GFF to a TSV file.
    table2fasta         Convert a CSV or TSV of sequences to a FASTA file.
```

```bash
$ bioino gff2table --help
usage: bioino gff2table [-h] [--format {TSV,CSV}] [--metadata] [--output OUTPUT] [input]

positional arguments:
  input                 Input file in GFF format. Default: "<_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>".

optional arguments:
  -h, --help            show this help message and exit
  --format {TSV,CSV}, -f {TSV,CSV}
                        File format. Default: "TSV".
  --metadata, -m        Write GFF header as commented lines.
  --output OUTPUT, -o OUTPUT
                        Output file. Default: STDOUT
```

```bash
$ bioino table2fasta --help
usage: bioino table2fasta [-h] [--format {TSV,CSV}] [--sequence SEQUENCE] --name [NAME [NAME ...]]
                          [--description [DESCRIPTION [DESCRIPTION ...]]] [--worksheet WORKSHEET] [--output OUTPUT]
                          [input]

positional arguments:
  input                 Input file in GFF format. Default: "<_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>".

optional arguments:
  -h, --help            show this help message and exit
  --format {TSV,CSV}, -f {TSV,CSV}
                        File format. Default: "TSV".
  --sequence SEQUENCE, -s SEQUENCE
                        Column to take sequence from. Default: "sequence".
  --name [NAME [NAME ...]], -n [NAME [NAME ...]]
                        Column(s) to take sequence name from. Concatenates values with "_", replaces spaces with "-". Required.
  --description [DESCRIPTION [DESCRIPTION ...]], -d [DESCRIPTION [DESCRIPTION ...]]
                        Column(s) to take sequence description from. Concatenates values with ";", replaces spaces with "_".
                        Default: don't use.
  --worksheet WORKSHEET, -w WORKSHEET
                        For XLSX files, the worksheet to take the table from. Default: "Sheet 1".
  --output OUTPUT, -o OUTPUT
                        Output file. Default: STDOUT
```

### Python API

#### FASTA

Read FASTA files (or strings) into iterators of named tuples.

```python
>>> from bioino import FastaSequence, FastaCollection

>>> seq1 = FastaSequence("example", "This is a description", "ATCG")
>>> seq1
FastaSequence(name='example', description='This is a description', sequence='ATCG')
>>> seq2 = FastaSequence("example2", "This is another sequence", "GGGAAAA")
>>> fasta_stream = FastaCollection([seq1, seq2])
>>> fasta_stream
FastaCollection(sequences=[FastaSequence(name='example', description='This is a description', sequence='ATCG'), FastaSequence(name='example2', description='This is another sequence', sequence='GGGAAAA')])

```

These objects show as FASTA format when written, toptionally to a file.

```python
>>> fasta_stream.write()  
>example This is a description
ATCG
>example2 This is another sequence
GGGAAAA
```

#### GFF

Makes an attempt to conform to GFF3 but makes no guarantees.

Similar to the FSAT utiities, GFF is read into an object.

```python
>>> from io import StringIO
>>> from bioino import GffFile

>>> lines = ["##meta1 item1", 
...          "#meta2  item2  comment", 
...          '\t'.join("test_seq    test_source gene    1   10  .   +   .   ID=test01;attr1=+".split()),
...          '\t'.join("test_seq    test_source gene    9   100  .   +   .   Parent=test01;attr2=+".split())]
>>> file = StringIO()
>>> for line in lines:
...     print(line, file=file)
>>> gff = GffFile.from_file(file)
```

These render as GFF lines when printed.

```python
>>> gff.write()  
##meta1 item1
#meta2  item2  comment
test_seq   test_source     gene    1       10      .       +       .       ID=test01;attr1=+
test_seq   test_source     gene    9       100     .       +       .       Parent=test01;attr2=+

```

#### GFF lookup table

An iterable of `GffLine`s can be converted into a lookup table mapping
chromosome location to feature annotations. Regions without annotation
are automatically filled with references to upstream or 
downstream features.

Just create a `GffFile` with `lookup=True`, or use the `_lookup_table()` method of an instantiated `GffFile`.

There are currently some limitations:
- Currently only works for single-chromosome files.
- Only references parent features. Child features not yet indexed.
- Will not work for GFFs with a single parent feature.
- Ignores the following feature types: "region", :repeat_region"

#### Interconversion

`GFFLine`s can be converted to dictionaries and vice versa.

```python
>>> from bioino import GffLine

>>> d = dict(seqid='TEST', source='test', feature='gene', start=1, end=100, score='.', strand='+', phase='+')
>>> print(GffLine.from_dict(d))
TEST        test    gene    1       100     .       +       +
>>> d.update(dict(ID='test001', comment='This is a test'))
>>> GffLine.from_dict(d).write() 
TEST    test    gene    1       100     .       +       +       ID=test001;comment=This is a test
```

```python
>>> from io import StringIO
>>> from bioino import GffFile

>>> file = StringIO()
>>> lines = ["TEST    test    gene    1       100     .       +       +  ID=test001;comment=Test".split(),
...          "TEST2    test2    gene    101       200     .       +       +  ID=test002;comment=Test2".split()]
>>> for line in lines:
...     print('\t'.join(line), file=file)
>>> list(GffFile.from_file(file).as_dict())  
[{'seqid': 'TEST', 'source': 'test', 'feature': 'gene', 'start': 1, 'end': 100, 'score': '.', 'strand': '+', 'phase': '+', 'ID': 'test001', 'comment': 'Test'}, {'seqid': 'TEST2', 'source': 'test2', 'feature': 'gene', 'start': 101, 'end': 200, 'score': '.', 'strand': '+', 'phase': '+', 'ID': 'test002', 'comment': 'Test2'}]
         

```

And Pandas DataFrames can be converted to FASTA.

```python
>>> import pandas as pd

>>> df = pd.DataFrame(dict(seq=['atcg', 'aaaa'], 
...                  title=['seq1', 'seq2'], 
...                  info=['SeqA', 'SeqB'], 
...                  score=[1, 2]))
>>> df 
        seq title  info  score
0  atcg  seq1  SeqA      1
1  aaaa  seq2  SeqB      2
>>> FastaCollection.from_pandas(df, sequence='seq', 
...                             names=['title'], 
...                             descriptions=['info', 'score']).write() 
>seq1 info=SeqA;score=1
atcg
>seq2 info=SeqB;score=2
aaaa
```

## Suggestions, issues, fixes

File an issue [here](https://github.com/scbirlab/bioino).

## Documentation

Check the API [here](https://bioino.readthedocs.org).

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "bioino",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "biology,bioinformatics,science,io",
    "author": "",
    "author_email": "Eachan Johnson <eachan.johnson@crick.ac.uk>",
    "download_url": "https://files.pythonhosted.org/packages/e4/c8/94bea1143b0d5bf4fe0f309f43eb744fb87ac1058c36b824a15fcedff846/bioino-0.0.2.post1.tar.gz",
    "platform": null,
    "description": "# \ud83d\udcbb bioino\n\n![GitHub Workflow Status (with branch)](https://img.shields.io/github/actions/workflow/status/scbirlab/bioino/python-publish.yml)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/bioino)\n![PyPI](https://img.shields.io/pypi/v/bioino)\n\nCommand-line tools and Python API for interconverting FASTA, GFF, and CSV. \n\n**bioino** currently converts tables to FASTA, and GFF to tables. Also provides \na Python API for handling GFF and FASTA files, and converting to table\nfiles.\n\n_Warning_: **bioino** is under active development, and not fully tested, so \nthings may change, break, or simply not work.\n\n## Installation\n\n### The easy way\n\nInstall the pre-compiled version from PyPI:\n\n```bash\npip install bioino\n```\n\n### From source\n\nClone the repository, then `cd` into it. Then run:\n\n```bash\npip install -e .\n```\n\n## Usage\n\n### Command line\n\nConvert CSV or XLSX of sequences to a FASTA file. Info goes to `stderr`, so you can pipe the output you\nwant to other tools or to a file.\n\n```bash\n$ printf 'name\\tseq\\tdata\\nSeq1\\tAAAAA\\tSome-info\\n' | bioino table2fasta -n name -s seq -d data\n\ud83d\ude80 Generating FASTA from tables with the following parameters:\n        subcommand: table2fasta\n        input: <_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>\n        format: TSV\n        sequence: seq\n        name: ['name']\n        description: ['data']\n        worksheet: Sheet 1\n        output: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>\n        func: <function _table2fasta at 0x7f4b48a43d30>\n>Seq1 data=Some-info\nAAAAA\n\u23f0 Completed process in 0:00:00.025771\n```\n\nConvert GFF tables to TSV (or CSV).\n\n```bash\n$ printf 'test_seq\\ttest_source\\tgene\\t1\\t10\\t.\\t+\\t.\\tID=test01;attr1=+\\n' | bioino gff2table 2> /dev/null\nseqid   source  feature start   end     score   strand  phase   ID      attr1\ntest_seq        test_source     gene    1       10      .       +       .       test01  +\n\n$ printf 'test_seq\\ttest_source\\tgene\\t1\\t10\\t.\\t+\\t.\\tID=test01;attr1=+\\n' | bioino gff2table -f CSV 2> /dev/nul\nl\nseqid,source,feature,start,end,score,strand,phase,ID,attr1\ntest_seq,test_source,gene,1,10,.,+,.,test01,+\n```\n\n#### Detailed usage\n\n```bash\n$ bioino --help\nusage: bioino [-h] {gff2table,table2fasta} ...\n\nInterconvert some bioinformatics file formats.\n\noptional arguments:\n  -h, --help            show this help message and exit\n\nSub-commands:\n  {gff2table,table2fasta}\n                        Use these commands to specify the tool you want to use.\n    gff2table           Convert a GFF to a TSV file.\n    table2fasta         Convert a CSV or TSV of sequences to a FASTA file.\n```\n\n```bash\n$ bioino gff2table --help\nusage: bioino gff2table [-h] [--format {TSV,CSV}] [--metadata] [--output OUTPUT] [input]\n\npositional arguments:\n  input                 Input file in GFF format. Default: \"<_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>\".\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --format {TSV,CSV}, -f {TSV,CSV}\n                        File format. Default: \"TSV\".\n  --metadata, -m        Write GFF header as commented lines.\n  --output OUTPUT, -o OUTPUT\n                        Output file. Default: STDOUT\n```\n\n```bash\n$ bioino table2fasta --help\nusage: bioino table2fasta [-h] [--format {TSV,CSV}] [--sequence SEQUENCE] --name [NAME [NAME ...]]\n                          [--description [DESCRIPTION [DESCRIPTION ...]]] [--worksheet WORKSHEET] [--output OUTPUT]\n                          [input]\n\npositional arguments:\n  input                 Input file in GFF format. Default: \"<_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>\".\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --format {TSV,CSV}, -f {TSV,CSV}\n                        File format. Default: \"TSV\".\n  --sequence SEQUENCE, -s SEQUENCE\n                        Column to take sequence from. Default: \"sequence\".\n  --name [NAME [NAME ...]], -n [NAME [NAME ...]]\n                        Column(s) to take sequence name from. Concatenates values with \"_\", replaces spaces with \"-\". Required.\n  --description [DESCRIPTION [DESCRIPTION ...]], -d [DESCRIPTION [DESCRIPTION ...]]\n                        Column(s) to take sequence description from. Concatenates values with \";\", replaces spaces with \"_\".\n                        Default: don't use.\n  --worksheet WORKSHEET, -w WORKSHEET\n                        For XLSX files, the worksheet to take the table from. Default: \"Sheet 1\".\n  --output OUTPUT, -o OUTPUT\n                        Output file. Default: STDOUT\n```\n\n### Python API\n\n#### FASTA\n\nRead FASTA files (or strings) into iterators of named tuples.\n\n```python\n>>> from bioino import FastaSequence, FastaCollection\n\n>>> seq1 = FastaSequence(\"example\", \"This is a description\", \"ATCG\")\n>>> seq1\nFastaSequence(name='example', description='This is a description', sequence='ATCG')\n>>> seq2 = FastaSequence(\"example2\", \"This is another sequence\", \"GGGAAAA\")\n>>> fasta_stream = FastaCollection([seq1, seq2])\n>>> fasta_stream\nFastaCollection(sequences=[FastaSequence(name='example', description='This is a description', sequence='ATCG'), FastaSequence(name='example2', description='This is another sequence', sequence='GGGAAAA')])\n\n```\n\nThese objects show as FASTA format when written, toptionally to a file.\n\n```python\n>>> fasta_stream.write()  \n>example This is a description\nATCG\n>example2 This is another sequence\nGGGAAAA\n```\n\n#### GFF\n\nMakes an attempt to conform to GFF3 but makes no guarantees.\n\nSimilar to the FSAT utiities, GFF is read into an object.\n\n```python\n>>> from io import StringIO\n>>> from bioino import GffFile\n\n>>> lines = [\"##meta1 item1\", \n...          \"#meta2  item2  comment\", \n...          '\\t'.join(\"test_seq    test_source gene    1   10  .   +   .   ID=test01;attr1=+\".split()),\n...          '\\t'.join(\"test_seq    test_source gene    9   100  .   +   .   Parent=test01;attr2=+\".split())]\n>>> file = StringIO()\n>>> for line in lines:\n...     print(line, file=file)\n>>> gff = GffFile.from_file(file)\n```\n\nThese render as GFF lines when printed.\n\n```python\n>>> gff.write()  \n##meta1 item1\n#meta2  item2  comment\ntest_seq   test_source     gene    1       10      .       +       .       ID=test01;attr1=+\ntest_seq   test_source     gene    9       100     .       +       .       Parent=test01;attr2=+\n\n```\n\n#### GFF lookup table\n\nAn iterable of `GffLine`s can be converted into a lookup table mapping\nchromosome location to feature annotations. Regions without annotation\nare automatically filled with references to upstream or \ndownstream features.\n\nJust create a `GffFile` with `lookup=True`, or use the `_lookup_table()` method of an instantiated `GffFile`.\n\nThere are currently some limitations:\n- Currently only works for single-chromosome files.\n- Only references parent features. Child features not yet indexed.\n- Will not work for GFFs with a single parent feature.\n- Ignores the following feature types: \"region\", :repeat_region\"\n\n#### Interconversion\n\n`GFFLine`s can be converted to dictionaries and vice versa.\n\n```python\n>>> from bioino import GffLine\n\n>>> d = dict(seqid='TEST', source='test', feature='gene', start=1, end=100, score='.', strand='+', phase='+')\n>>> print(GffLine.from_dict(d))\nTEST        test    gene    1       100     .       +       +\n>>> d.update(dict(ID='test001', comment='This is a test'))\n>>> GffLine.from_dict(d).write() \nTEST    test    gene    1       100     .       +       +       ID=test001;comment=This is a test\n```\n\n```python\n>>> from io import StringIO\n>>> from bioino import GffFile\n\n>>> file = StringIO()\n>>> lines = [\"TEST    test    gene    1       100     .       +       +  ID=test001;comment=Test\".split(),\n...          \"TEST2    test2    gene    101       200     .       +       +  ID=test002;comment=Test2\".split()]\n>>> for line in lines:\n...     print('\\t'.join(line), file=file)\n>>> list(GffFile.from_file(file).as_dict())  \n[{'seqid': 'TEST', 'source': 'test', 'feature': 'gene', 'start': 1, 'end': 100, 'score': '.', 'strand': '+', 'phase': '+', 'ID': 'test001', 'comment': 'Test'}, {'seqid': 'TEST2', 'source': 'test2', 'feature': 'gene', 'start': 101, 'end': 200, 'score': '.', 'strand': '+', 'phase': '+', 'ID': 'test002', 'comment': 'Test2'}]\n         \n\n```\n\nAnd Pandas DataFrames can be converted to FASTA.\n\n```python\n>>> import pandas as pd\n\n>>> df = pd.DataFrame(dict(seq=['atcg', 'aaaa'], \n...                  title=['seq1', 'seq2'], \n...                  info=['SeqA', 'SeqB'], \n...                  score=[1, 2]))\n>>> df \n        seq title  info  score\n0  atcg  seq1  SeqA      1\n1  aaaa  seq2  SeqB      2\n>>> FastaCollection.from_pandas(df, sequence='seq', \n...                             names=['title'], \n...                             descriptions=['info', 'score']).write() \n>seq1 info=SeqA;score=1\natcg\n>seq2 info=SeqB;score=2\naaaa\n```\n\n## Suggestions, issues, fixes\n\nFile an issue [here](https://github.com/scbirlab/bioino).\n\n## Documentation\n\nCheck the API [here](https://bioino.readthedocs.org).\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Lightweight IO and conversion for bioinformatics file formats.",
    "version": "0.0.2.post1",
    "project_urls": {
        "Bug Tracker": "https://github.com/scbirlab/bioino/issues",
        "Homepage": "https://github.com/scbirlab/bioino"
    },
    "split_keywords": [
        "biology",
        "bioinformatics",
        "science",
        "io"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "de91b71747acd7cf215dd2f0240515f07d6f429896e8ca5213cb76b1d130beef",
                "md5": "f90a26f356df72b10d07a949b2f87162",
                "sha256": "50e737582822f27be90006518930a35f0109ca6d2f9a4ec03148d97dd6c07797"
            },
            "downloads": -1,
            "filename": "bioino-0.0.2.post1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f90a26f356df72b10d07a949b2f87162",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 15961,
            "upload_time": "2024-03-19T16:34:28",
            "upload_time_iso_8601": "2024-03-19T16:34:28.113185Z",
            "url": "https://files.pythonhosted.org/packages/de/91/b71747acd7cf215dd2f0240515f07d6f429896e8ca5213cb76b1d130beef/bioino-0.0.2.post1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e4c894bea1143b0d5bf4fe0f309f43eb744fb87ac1058c36b824a15fcedff846",
                "md5": "338e618311aa8abe1c2986326801df97",
                "sha256": "63bdbed2f2cb1c8defd93c25387e86e9acba0dead51a994fef8dc4e2da060eb5"
            },
            "downloads": -1,
            "filename": "bioino-0.0.2.post1.tar.gz",
            "has_sig": false,
            "md5_digest": "338e618311aa8abe1c2986326801df97",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 16862,
            "upload_time": "2024-03-19T16:34:29",
            "upload_time_iso_8601": "2024-03-19T16:34:29.903577Z",
            "url": "https://files.pythonhosted.org/packages/e4/c8/94bea1143b0d5bf4fe0f309f43eb744fb87ac1058c36b824a15fcedff846/bioino-0.0.2.post1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-19 16:34:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "scbirlab",
    "github_project": "bioino",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "bioino"
}
        
Elapsed time: 0.66357s